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ABSTRACT 

This research examines the relationship between concrete compressive strength and 

strand bond.  The goal of this research was to develop an equation that relates strand bond to 

concrete compressive strength at strand release (approximately 1 day of age) and at 28 days of 

age, and those equations are presented in this investigation.  Strand bond is assessed by 

measuring the transfer length and development length for prestressed beams cast in the 

laboratory.  In the U.S., strand bond is predicted using transfer length and development length 

equations provided by the American Concrete Institute (ACI-318) Building Code and American 

Association of State and Highway Transportation Official (AASHTO) LRFD Bridge Design 

Specifications which were developed based on the 1950´s investigations.  The equations 

provided by both ACI and AASHTO do not address concrete strength while equations, 

developed in this investigation, do account for the compressive strength of concrete at release 

and testing time.  Although there has been much research conducted in this matter, this research 

provides a reliability data analysis relating to transfer and development lengths of prestressed 

concrete beams.  Unlike many of the previous programs, this research includes strands of a 

known quality, the largest database of test specimens, and a variety of concrete mixtures and 

concrete strengths.  This research concludes with the development of an analytical model to 

predict transfer length which includes concrete strength at release with fracture propagation 

around the strand.  
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NOTATIONS 

As area of the prestressing strand (mm2) 

Ab  nominal area of strand 

Ag  cross section area of concrete member 

Ap  total area of strand 

Ac cross sectional area of concrete 

cy clear concrete cover 

ec  eccentricity of the prestress force 

E  elastic modulus of element 

Ec  elastic modulus of concrete 

Ep  elastic modulus of strand 

Epr  elastic modulus of strand in the transversal direction 

db diameter of the strand (mm) 

f‘ci concrete compressive strength at prestress release (MPa) 

f‘c concrete compressive strength at 28-days or time of testing (MPa) 

fsi initial prestress (MPa) 

fse effective prestress in strand after losses (MPa) 

fps stress at nominal strength of the member (MPa)  

ft   concrete’s tensile strength 

fcz  concrete compressive stress due to effective prestress 

fpu  ultimate tensile strength 

fpy  yield strength 

fpi  initial prestressing stress 
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Lt  transfer length of prestressing steel in pretensioned concrete members 

Lfb flexural bond length 

Le embedment length (mm) 

Ld development length (mm) 

ke normalized embedment length factor 

kp normalized predicted development length factor 

U’t plastic transfer bond stress coefficient  

U’d plastic development bond stress coefficient  

 B bound modulus (MPa/mm) 

Ig moment of inertia of concrete section 

  Poisson’s ratio of element 

p   Poisson’s ratio of strand 

c   Poisson’s ratio of concrete 

p cE E    Modular ratio 

n  integer number (2 for second-order equation and 3 for third-order equation) 

λb  bond factor 

λsp  strand perimeter factor (1 is for solid strand and 4/3 for strand seven wire) 

uscE  factor of unit system conversion for elastic modulus 

uscT  factor of unit system conversion for tensile strength 

w  unit weight of concrete 

µ  coefficient of friction between prestressing steel and concrete 

σi  interface pressure 

r  radial stress at concrete and strand interface 
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   hoop stress 

z  longitudinal stress 

εr  radial strain 

εθ  hoop strain 

εz  longitudinal strain 

εsh  drying shrinkage coefficient 

Kf  constant factor 

kt  radial stress 

kii  constant factor (ii = 1,2,3,..,7) 

bik  bond surface stiffness 

rp  nominal radius of strand 

rc,1  internal radius of concrete cylinder which equals to radius of strand after prestressing 

rc,2 external radius of concrete cylinder 

r  radius in the radial direction 

R1 inner radius 

R2  outer radius 

Rcr  crack radius 

Rfr  fracture radius 

τ  bond stress 

( , , )r z  polar coordinates stresses 

( , v, )u w  polar coordinates displacements 

p

fp   increase in radius of strand due to reduction in longitudinal stress from initial prestress fsi 

to effective prestress fse 
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p

i  reduction in radius of strand due to the uniform radial compression at interface σi 

c

i   increase in inner radius of the thick-walled concrete cylinder due to the interface pressure 

σi 

c

fcz   increase in inner radius of the thick-walled concrete cylinder due to the longitudinal 

compressive stress at the level of strand fcz 

c

sh  reduction in inner radius of the thick-walled concrete cylinder due to drying shrinkage εsh 

c

cr  deformation of the real crack zone 

c

fr  deformation of the fracture zone 

fr

c

Ru  radial displacement at r = Rfr 

x  incremental of transfer zone 

bif  bond force around the strand surface 

pxif  strand stress incremental 

wcr  crack width at any point  

wa  crack width 

wo  initial crack width at the shear plane 
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 : INTRODUCTION AND RESEARCH OBJECTIVES 

 INTRODUCTION 

Transfer length is defined as the necessary length where the fully effective prestressing force, fse, 

applied to the strand is transferred to the concrete.  Figure 1-1 illustrates how the prestressing 

force applied to the strand is transferred to the concrete.  The cross-sectional area of the 

prestressing strand is reduced as a consequence of elongation from strand tensioning and tries to 

expand back to its original diameter when the tension is released.  Since the prestress at the ends 

of the strand is zero, the variation of the diameter from the original value at the end to the 

reduced value after the transfer length creates a wedge effect in the concrete.  This phenomenon 

helps to transfer the stress from the strand to the concrete and is known as Hoyer’s effect [1-3]. 

 

 

Figure 1-1. Hoyer’s Effect - Transferring of prestress to the concrete 

 

Development length, Ld, is defined as the essential length of strand required to develop the stress 

in the strand, fps, corresponding to the full flexural strength of the member. The flexural bond 

length is defined as the length of concrete beyond the transfer length required to develop the 

ultimate tensile strength of the prestressing strand.  Therefore, development length is the sum of 
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the transfer length and the flexural bond length.  Figure 1-2 illustrates an idealization of strand 

stress versus length for the pretensioned strand.   

 

Figure 1-2. Strand stress vs. length 

 

Investigations in transfer and development lengths began when Hanson and Kaar published their 

investigation in 1959 [4].  In 1963, the American Concrete Institute 318 Building Code (ACI 

318-14) implemented these equations for predicting transfer and development lengths [5].  The 

equations were adopted in 1973 by the American Association of State and Highway 

Transportation Officials (AASHTO) Specifications [6-8].  The ACI and AASHTO equations for 

transfer length and development are shown below.  

The equation for transfer length given by ACI 318-14 (Section 21.2.3) is written as follows 

 

    
20.7

se
t b

f
L d          (1) 

where: 

Lt = transfer length (mm) 
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fse = effective prestressing stress after all losses (MPa) 

db = strand diameter (mm) 

In section 22.5.9.1, ACI 318-14 defines transfer length to be 50 strand diameter (50db), and the 

development length is a sum of the transfer length and the flexural bond length. The flexural 

bond is defined by 

 

    
1

( )
6.9

b ps se bL f f d           (2) 

where: 

Lb = flexural bond length (mm) 

fse = effective prestressing stress after all losses (MPa) 

fps = strand stress at nominal strength of member (MPa) 

db = strand diameter (mm) 

 

Therefore, the development length, Ld, equation given by ACI 318-14 in its Section 25.4.8.1 is 

the following 

 

    
1 1 2

( )
20.7 6.9 6.9 3

se
d b ps se b ps se b

f
L d f f d f f d

 
     

 
       (3) 

 

Although AASHTO LRFD adopted the same equations for transfer and development lengths 

given by ACI 318-14[5], AASHTO LRFD has specified that the transfer length can be taken as 

60 strand diameters (60db) (Article 5.11.4.1) [6].  The development length, written in Eq. (4), 

must be taken as specified in its Article 5.11.4.2, and a k factor was added according to 
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recommendation of the 1988 FHWA memorandum mandated to the AASHTO Standard equation 

which is the same equation given by ACI 318-14. 

    
2

6.9 3
d ps se b

k
L f f d

 
  

 
         (4) 

where: 

Ld = development length (mm) 

fse = effective prestressing stress after all losses (MPa) 

fps = strand stress at nominal strength of member (MPa) 

db = strand diameter (mm) 

k = 1.0 for pretensioned panels, piles, and other pretensioned members with a depth < 0.60 m. 

k = 1.6 for pretensioned members with a depth  0.60 m. 

k = 2.0 for debonded strand (Article 5.11.4.3) 

These equations were based on early investigations which used stress-relieved Grade 1724 

(Grade 250) strand with an ultimate strength, fpu, of 1724 MPa (250 ksi) which was typically 

tensioned to approximately 0.70fpu.  Currently, low relaxation, Grade 1862 (Grade 270) strand, 

with fpu of 1862 MPa (270 ksi), is used and is tensioned to stresses up to 0.80fpu [8, 9].  In 

addition to changes in strand properties, concrete properties have also changed since the 

inception of these equations.   

 MOTIVATION 

The transfer and development length equations presented in the ACI 318-14 and AASHTO 

LRFD Codes are functions of the strand stress, including both the effective prestress in the strand 

after all losses (fse) and strand stress at nominal strength of member (fps), and the diameter of the 
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strand (db) [5, 6].  On the other hand, researchers have shown that variables such as initial 

prestress (fsi), concrete compressive strength at release time (f‘ci) and at 28-day (f‘c) affect both 

transfer and development lengths [9-13].  Research has shown that the equations, both transfer 

and development length, are conservative for high strength concrete (concrete with compressive 

strengths greater than 62 MPa (9000 psi) at 28 days). The conservativeness of the equations is 

due to the changes in material properties of both the strands and concrete since the 1950’s.  Such 

changes in material properties warrant a change in the prediction equations.  

 RESEARCH OBJECTIVES 

The objectives of the research project are outlined below: 

1. Conduct a thorough review of literature pertaining to transfer and development length.  

The literature review will focus on experimental work and numerical analysis using finite 

element method. Emphasis will be placed on research that focuses on concrete 

compressive strength, initial prestress, and strand diameter.  

2. Collect data from early investigations on transfer and development lengths published by 

the University of Arkansas (UA) and other authors.  

3. Develop transfer and development length equations using experimental data. The 

development of these two equations will be the topic of the first and second journal 

articles (one article on transfer length and another on development length). 

4. Conduct an experimental measurement of the transfer and development lengths for 24 

prestressed concrete beams which were cast at the UA. The beams were built as the same 

size as the earlier specimens [165 mm (6.5 in.) by 305 mm (12 in.) by 5.5 m (18 ft.)] cast 

at the UA. Preliminary research has shown that transfer lengths increased when the 
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compressive strength at release was less than 34.5 MPa (5000 psi).  However, when the 

compressive strength at release was greater than 34.5 MPa (5000 psi), there was little 

difference in transfer length.  Similar trends were apparent in the development length 

results. Therefore, the compressive strengths targets at release of the proposed beams 

were focused on a range from 21 MPa (3000 psi) to 55 MPa (8000 psi), but the 

compressive strengths at release measured in the field were in the range from 27 MPa 

(3860 psi) to 65 MPa (9390 psi).  The majority of the beams were cast with compressive 

strengths at release less than 34.5 MPa (5000 psi).    

5. Develop a numerical method to calculate the internal contact pressure between strand 

surface and concrete using the thick-walled cylinder theory, and develop a finite element 

model in one dimension to predict transfer length and compare the results with the 

experimental results reported in the literature. This is the subject of the third paper. 

 DISSERTATION ORGANIZATION 

This dissertation is a compilation of three articles which were written to support the main idea of 

the research. This dissertation is organized in five chapters and two appendices. Chapter 1 

describes the introduction and why this research is needed. Chapter 2 describes how a new 

transfer length equation was developed and examines the effect of concrete strength on the 

transfer length of the prestressing strand. Chapter 3 examines a wide range of concrete 

compressive strengths and their effects on the development length in prestressed concrete 

members and formulation of a new equation to predict this length. Chapter 4 describes a 

numerical method to calculate the contact pressure at the interface of strand and concrete which 

is implemented in a one dimensional, finite element analysis which measures the transfer length 
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in prestressed concrete by an iterative process. The results obtained through numerical analysis 

were compared and discussed with the experimental results reported by several authors.  Finally, 

conclusions, contributions of the research, and recommendations for further research in this area 

are presented in Chapter 5.  The appendices contain the codes of the programs written to achieve 

this research. 
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Abstract: 

This paper examines the effect of concrete compressive strength on the transfer length of 

prestressing strands. The paper includes the results from several research projects conducted at 

the University of Arkansas (UA) and from testing reported in the literature. At the UA, 57 

prestressed, precast beams have been cast since 2005. The beams were cast with 

selfconsolidating concrete (SCC), high strength concrete (HSC), lightweight self-consolidating 

concrete (LWSCC), and ultra-high performance concrete (UHPC). Using data from the UA and 

from the literature, an equation to estimate transfer length was developed and presented. The 

results were also compared with the American Concrete Institute (ACI 318) and the American 

Association of State Highway and Transportation Officials (AASHTO) prediction equations for 

transfer length, which were designed for conventional concrete. The results also showed that 

there was little change in transfer length when the compressive strength at release was greater 

than 34.5 MPa. 

 

Keywords: Pretensioned concrete, Transfer length, Bond 
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 INTRODUCTION 

Prestressed concrete has been used extensively since the 1950's.  Many buildings and bridge 

structures utilize its principles, especially pre-cast structures.  In the design of pretensioned 

members, there is a particular focus on the length a strand must be embedded in the concrete in 

order to develop its bond strength.  Transfer length refers to the strand length required to transfer 

the initial prestress in the strand to the concrete.   

The ACI 318 Building Code and Commentary (hereafter referred to as ACI 318-14) [1] and the 

AASHTO Load and Resistance Factor Design (LRFD) [2] Specifications (hereafter referred to as 

AASHTO) provide equations to estimate transfer length.  The equation is a function of the 

effective prestress (fse) and the strand diameter (db) [1-3].  Investigators have shown that initial 

prestress (fsi), and concrete compressive strength both at prestress release (f‘ci) and at 28-days 

(f‘c), contribute to transfer length [3-8]. 

With the changes occurring regarding concrete mixture proportioning and properties, researchers 

have and are questioning the accuracy of the ACI 318-14 and AASHTO equations.  In these 

design codes, concrete compressive strength is not a variable in the transfer length equations 

even though it has been shown to affect bond [8-10].  For example, the transfer length for high 

strength concrete members is less than that predicted by ACI 318-14 and AASHTO [5, 6, 11].   

Transfer length is an important parameter in shear design and in determining allowable stresses.  

An incorrect estimation of this length can affect the shear capacity of a member and may result 

in serviceability issues that occur in the end zones at strand release [10, 12].  Therefore, there is a 

need to better estimate transfer length and this can be accomplished by incorporating concrete 

compressive strength in the transfer length equation. 
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 BACKGROUND 

Research on the transfer length in prestressed concrete members began when Hanson and Kaar 

published their findings on the flexural bond behavior of prestressing strand in 1959 [13].  In 

1963, the ACI Building Code implemented equations for these lengths [1].  The ACI formulas 

were adopted in 1973 by AASHTO [2, 14, 15].  The equation for transfer length given by ACI 

318-14 section R21.2.3 [1, 3] is written as follows: 

20.7

se
t b

f
L d           (1) 

where: 

Lt = transfer length (mm) 

fse = effective prestress after all losses (MPa) 

db = strand diameter (mm) 

ACI 318 also states that transfer length can be estimated as 50 strand diameters (50db) [1, 3] and 

AASHTO uses 60db (Article 5.11.4.1) [2]. 

The early transfer length research used stress-relieved Grade 1724 strand with an ultimate 

strength, fpu, of 1724 MPa, and were typically pretensioned to approximately 0.70fpu. In current 

practice, low-relaxation Grade 1862 strand (fpu of 1862 MPa) is used, and is pretensioned up to 

0.80fpu [2, 5, 15].  However these changes are not reflected in the code equations. 

In 1977, Zia and Mostafa proposed a formula to calculate the transfer length of prestressing 

strands [7].  Their equation accounted for the effects of strand size, initial prestress, effective 

prestress, ultimate strength of the prestressing strand, and concrete compressive strength at 

prestress release (ranging from 14 to 55 MPa).  Their research showed that the equations were 

more conservative (predicted larger values) than the ACI Code when the concrete strength at 

release is low (14 MPa ≤ f’ci ≤ 28 MPa). 
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In 1990, Cousins, Johnson, and Zia developed analytical equations for transfer length that 

included plastic and elastic behavior.  In these equations new variables were introduced such as 

the plastic transfer bond stress coefficient (U’t), the bond modulus (B), and the prestressing 

strand area (As).  Even though Cousins et al. expressed that the ACI 318 Code and AASHTO 

provisions were inadequate and should be revised, the equations remained unchanged [4].   

In 1993, Mitchell et al. studied the influence of concrete strength on transfer length.  Their 

reported concrete strengths at prestress release varied from 21 to 50 MPa and from 31 to 89 MPa 

at the time of testing. Mitchell et al. developed and proposed an equation for transfer length 

which predicted shorter values than ACI 318-14 for higher strength concretes [5].  Their findings 

indicated a reduction in transfer length with increasing concrete compressive strength. 

In 1994, Deatherage, Burdette, and Chew cast twenty full scale AASHTO Type I beams with 

different strand diameters to investigate the transfer length.  This work came after the Federal 

Highway Administration (FHWA) enforced restrictions on the use of Grade 1862 low relaxation 

seven wire prestressing strand in prestressed concrete girders in October 1988 [16].  Deatherage, 

Burdette, and Chew considered different strand stresses to formulate an equation for transfer 

length.  The proposed equation resembles the ACI 318-14 and AASHTO equations, but the 

transfer length is governed by the initial prestress (fsi) instead the effective prestress (fse) [1-3].  

Although Deatherage, Burdette, and Chew made suggestions on the transfer length equation, no 

changes were made because the suggestions were more conservative.  

In 1996, Russell and Burns investigated the transfer length for 12.7 mm and 15.2 mm diameter 

strands.  They examined several variables such as strand spacing, strand debonding, 

reinforcement confinement, number of strands per specimen, and size and shape of the cross 

section [17].  The results showed that the transfer lengths, measured using the “95 Percent 
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Average Maximum Strain” method (95% AMS), for both 12.7 and 15.2 mm strands, were very 

similar and were larger than ACI 318 and AASHTO standard provisions.  Consequently, a new 

equation for transfer length was proposed by the expression 13.8se bf d ; where fse (MPa) and db 

(mm).  

In 2006, Marti-Vargas et al. showed that for concretes with compressive strengths in the range of 

21 MPa to 55 MPa, the transfer lengths were about 50% to 80% of those calculated by ACI 318-

11 [18].  Later, Marti-Vargas et al. investigated the relationship between the average bond stress 

for the transfer length as a function of the concrete compressive strength [19].  The transfer 

length decreased as the concrete compressive strength at prestress release increased [8, 20, 21], 

and the transfer length depended on the cement content, water content, and bond stress.  

In 2008, Ramirez and Russell published a report based on an investigation sponsored by the 

National Cooperative Highway Research Program (NCHRP-603) [6].  In this project the transfer 

length was measured in concrete specimens cast with normal-weight and high-strength concrete 

at compressive strengths up to 103 MPa.  The research showed that increasing concrete strength 

correlated clearly with the shortening of transfer length.  As a result, a new equation was 

recommended for the AASHTO specifications.  In particular, this new equation included the 

concrete compressive strength at release (f’ci).  In addition, for concrete compressive strengths at 

release of 28 MPa, the transfer length was recommended to be 60db, which was the same value 

provided by AASHTO.  On the other hand, for concrete strengths at release greater than 62 MPa, 

40 strand diameters (40db) was the recommended transfer length.  Although new equations were 

proposed to AASHTO, these equations for transfer length were not added to the specifications.  

Shown in Table 2-1 are several equations that were developed for predicting transfer length [4, 

6, 7, 14-16, 22]. 
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Table 2-1 - Proposed equations for predicting transfer length (MPa and mm). 

Source Transfer Length, Lt 

ACI-318 / AASHTO LRFD [1] 
20.7

se
t b

f
L d   

Zia and Mostafa, 1977 [7] '
1.5 117si

t b

ci

f
L d

f
   

Cousins et al., 1990 [4] 

' '

' '2

t ci se s
t

b t ci

U f f A
L

B d U f
   

Mitchell et al., 1993 [5] '

20.7

20.7

si
t b

ci

f
L d

f
  

Deatherage et al., 1994 [16] 
20.7

si
t b

f
L d  

Buckner, 1995 [15] 
20.7

si
t b

f
L d  

Lane, 1998 [14] '
4 127si

t b

c

f
L d

f
   

Kose and Burkett, 2005 [22]  
2

'
0.045 25.4si

t b

c

f
L d

f
   

Ramirez and Russell, 2008 [6] '

315
40t b b

ci

L d d
f

   

 

Since 2005, Hale et al have conducted a significant amount of research on transfer length [11, 

23-29].  These investigations focused on different types of concrete ranging from normal 

strength to ultra-high performance concrete.  This paper summarizes the findings of the research 

and those from the literature and proposes an equation that was based on research encompassing 

many concrete types with different compressive strengths. 
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 RESEARCH SIGNIFICANCE 

The research project included transfer lengths measured at the University of Arkansas (UA) and 

from results published in the literature.  At the UA, the transfer length was measured for 57 beam 

specimens.  The specimens were cast with a variety of concrete types at a wide range of 

compressive strengths.  In addition, measured transfer lengths data were collected from the 

literature.   This research focuses on the effect of concrete compressive strength (at release and 

28-days or time of testing) on transfer lengths.  With the data, an equation was developed that 

encompasses a wide range of concrete types and concrete compressive strengths.   

 EXPERIMENTAL PROGRAM 

 Concrete mixtures 

For the specimens cast at the UA, 11 different mixture proportions were developed.  These 11 

mixtures are shown in Table 2-2.  For the first six mixtures listed in Table 2-2, the first two 

letters represent the compressive strength.  “NS” refers to normal strength concrete mixtures and 

“HS” refers to high strength concrete mixtures.  The last two letters represent the type of coarse 

aggregate used in the mixtures.  The aggregate type included shale (SH), clay (CL), and 

limestone (LS).  The mixtures containing shale or clay are also lightweight mixtures with a unit 

weight of approximately 1922 kg/m3.  These first six mixtures were also self-consolidating.  The 

next two mixtures, SCC-I and SCC-III, were normal weight SCC mixtures cast with either Type 

I or Type III cement.  These mixtures were also normal weight (approximately 2323 kg/m3).  

Mixture “HSC” was a high strength concrete mixture.  Mixture “UHPC” was a commercially 

available ultra-high performance concrete mixture.  The final mixture “LWSCC” was a 

lightweight SCC mixture proportion that was developed by prestressed concrete beam fabricator.  
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The mixture proportions were discussed in greater details in earlier publications by the authors 

[11, 23-30]. 

The number of beams cast from each mixture and the number of transfer length tests performed 

on beams cast with that particular mixture are also presented in Table 2-2.  Fifty-one beams 

were cast with 15.2 mm diameter [24, 26, 29] strands, and six beams were cast with 12.7 mm 

diameter strands [27].   

Also shown in Table 2-2 is the mean compressive strength at release and at 28 days for each 

mixture.  The compressive strengths at release using 15.2 mm strand ranged from 23 MPa to 155 

MPa, and the 28 day strengths ranged from 34.5 MPa to 199 MPa.  Furthermore, for 12.7 mm 

diameter strand the compressive strengths at release ranged from 24 MPa to 37 MPa, and the 28 

day strengths ranged from 41 MPa to 52 MPa. 

 

Table 2-2 - Mixture identifications, number of tests, and compressive strength. 

Concrete Mixtures 

Number 

of Trial 

Beams 

Number 

of Lt 

tests 

f’ci 

Mean, 

MPa 

f’c 

Mean, 

MPa 

NSSH: Normal strength shale 5 10 28 42 

NSCL: Normal strength clay 4 8 31 39 

NSLS: Normal strength limestone 4 8 33 52 

HSSH: High strength shale 4 8 42 48 

HSCL: High strength clay 4 8 43 49 

HSLS : High strength limestone 4 8 48 64 

SCC-III : Self-consolidating concrete Type III 5 10 51 76 

SCC-I : Self-consolidating concrete Type I 8 16 54 84 

HSC : High strength concrete 6 12 64 85 

UHPC : Ultra high performance concrete 7 14 124 182 

LWSCC * : Lightweight self-consolidating concrete  6 12 31 46 

(*) 12.7 mm diameter strand 
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 Beam fabrication 

At the UA, 57 fully bonded, prestressed, precast beams have been cast since 2005.  Each beam 

had a rectangular cross-section of 165 mm by 305 mm and was 5.5 m length.  The beams 

contained two, low relaxation wire Gr. 1862 prestressing strands located a distance of 254 mm, 

measured from the top (compression fiber) of the beam to the centroid of the strand as shown in 

Figure 2-1.  Strand diameters of 12.7 mm and 15.2 mm were included in the study.  Two No. 19, 

Gr. 414 reinforcing bars were located near to 51 mm from the top of each beam.  The beams 

were reinforced with No 6 smooth bars spaced at 150 mm.  The beams were cast with mixtures 

shown in Table 2-2 [24, 26, 27, 29].  Two beams were cast simultaneously on a 15.2 m 

prestressing bed.  The strands were tensioned to 75% fpu, 1397 MPa. 

 

A 

 

B 

 

Figure 2-1. Beam section and reinforcement detail 

 

 Bond quality assessment 

The Standard Test for Strand Bond (STSB) was used to assess the quality of the strands used in 

the UA study.  The force required to induce 2.54 mm of free end slip for each specimen 

exceeded the 4899 kg minimum required for individual specimens.  For the three sources of 

strands used in the study, the average pull out values of 8700, 10083, and 9339 kg exceeded the 
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minimum requirement of 5715 kg.  Thus, the results showed that the strands were of good 

quality. 

 

 Instrumentation 

Before prestress release, detachable mechanical (DEMEC) strain gauge targets were attached to 

the beam at the level of the prestressing strand (Figure 2-2).  These targets were placed at both 

ends of the beam on both faces [7, 17, 31-34].  The first target was approximately placed at 25.4 

mm from the beam end, and the other DEMEC points were placed at 100 mm intervals.  The 

prestress was gradually released approximately 24 hours after casting.  This was accomplished 

by releasing the pressure in the hydraulic strand tensioning system.  Each beam specimen was 

labeled based on the concrete type along with a beam number.  For instance, the first beam cast 

using SCC with Type I cement was labeled SCCI-1 [11, 23, 25, 28].  Surface strains were 

assessed using a digital DEMEC strain gauge with 200 mm gauge length.  Strain readings were 

taken immediately before and after prestress release and at 3, 5, 7, 14, and 28 days (Figure 2-3).  

Transfer lengths were determined using the 95% Average Maximum Strain method (AMS) [17]. 

Transfer length was measured for both beam ends which results in 114 total tests as is shown in 

Table 2-2.   
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Figure 2-2. Placement of DEMEC points (Photo by author). 

 

 

Figure 2-3. DEMEC measurements (Photo by author). 
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 TRANSFER LENGTH ANALYSIS 

 Measured transfer length data  

The measured minimum, average, and maximum transfer lengths at release and at 28-days are 

presented in Table 2-3.  Additionally, the average concrete compressive strengths at release (f‘ci) 

and at 28-days (f‘c), the average of the effective strand stress after all losses (fse), and the 

predicted transfer lengths using ACI 318-14 & AASHTO are presented.   

As shown in Table 2-3, the maximum measured transfer length for all beams was 1090 mm.  

This occurred in the NSSH series which also had the lowest concrete compressive strength at 

release.  This value was greater than the predicted value of 792 mm by approximately 37.5%.  

The average transfer length for all NSSH beam was 733 mm at release which was 92.4% of the 

predicted value.   

 

Table 2-3 - Measured transfer lengths and predicted lengths. 

Series 
f’ci, 

MPa 

f’c, 

MPa 

fse, 

MPa 

Reported Transfer 

Lengths (mm): 

Release 

Reported Transfer 

Lengths (mm): 

28 days 

ACI /  

AASHTO 

Min. Avg. Max. Min. Avg. Max. Predicted 

NSSH 28 42 1076 505 733 1090 559 681 970 792 

NSCL 31 39 1069 495 597 815 424 635 841 787 

NSLS 33 52 1166 450 557 991 470 609 1031 858 

HSSH 42 48 1146 409 520 681 361 426 521 843 

HSCL 43 49 1154 361 486 780 399 487 610 850 

HSLS 48 64 1215 460 503 551 490 531 640 895 

SCC-III 51 76 1216 381 457 584 368 483 610 895 

SCC-I 54 84 1244 394 507 635 343 512 673 916 

HSC 64 85 1256 394 506 635 432 579 724 925 

UHPC 124 182 1297 267 358 432 279 361 457 955 

LWSCC (*) 31 46 1186 381 525 838 330 510 686 873 

(*): Strand 12.7 mm diameter was used in this case 
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At the other extreme, the predicted transfer length for the UHPC series was over 250% greater 

than the average measured transfer length.  The UHPC series possessed the highest compressive 

strength at release and at 28 days of age.  Table 2-3 shows that once the compressive strength at 

release achieved 42 MPa or greater, all measured transfer lengths were less than the values 

predicted by ACI 318-14 and AASHTO. 

The data was analyzed using a power regression which is shown in Figure 2-4.  The measured 

transfer lengths are plotted versus the concrete compressive strength.  The measured transfer 

length at both beam ends is plotted (L = live end and D = dead end) along with the compressive 

strength at release and at 28-days.  The data in Figure 2-4 confirms that the measured transfer 

lengths decreased as the concrete strengths increased [6, 35].  Based on the data shown in Figure 

2-4, concrete compressive strength should be included in the transfer length equations [8, 20, 22, 

35].   

 

 

Figure 2-4. Transfer length analysis – power regression. 
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Several researchers have examined the influence of other variables on transfer length [4, 7, 8, 19, 

20, 22, 31, 36].  Based on this previous research, two variable sets were included in this study.  

For the first set, concrete compressive strength at release (f‘ci), initial prestress (fsi) (75 % fpu = 

1397 MPa), and strand diameter (db) were examined.  The variables for the second set were 

concrete compressive strength at release (f‘ci), effective strand stress after all losses (fse), and 

strand diameter (db).  Statistical analysis was conducted for the two variable sets, and from this 

analysis the first set of variables (f’ci, fsi, and db) were chosen because these variables had a 

greater affect transfer length at release [5, 7].  Consequently, an equation for transfer length (Eq. 

2) was derived and is shown below: 

 

0.55

'
25.7 si

t b

ci

f
L d

f

 
  

 
        (2) 

where: 

fsi = initial prestress (MPa) 

f’ci = concrete strength at prestress release (MPa) 

db = nominal strand diameter (mm) 

 

Figure 2-5 shows the ratio between predicted and measured transfer length for the 

ACI/AASHTO, NCHRP-603, and the proposed equation (Eq. 2).  The ratio due to the proposed 

equation and NCHRP-603 are similar when the concrete strength at release is less than 62 MPa.  

The ratio is almost equal to one when the concrete strength at release is equal to 62 MPa.  At 

compressive strengths greater than 62 MPa, the proposed equation provides a better estimate 

than the NCHRP-603 equation.  At compressive strengths less than 41 MPa, the ACI 318-14 and 

AASHTO equations are more accurate than the proposed and NCHRP-603 equations.  In 
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addition, the ratio of the ACI 318-14 and AASHTO equations increases suddenly for higher 

compressive strength (f’ci ≥ 62 MPa) while the ratio due to the proposed equation remains closer 

to one. 

 

 

Figure 2-5. Ratio of predicted to measured transfer length. 

 

 Transfer length data from the literature 

Transfer length data [4-6, 16, 17, 19, 33, 34, 37-41] were collected from the literature in order to 

examine the accuracy of the proposed equation.  For 12.7 mm strands, 293 transfer length tests 

were identified in the literature, and this number was reduced to 180 data points (Table 2-4).  

Many researchers reported transfer lengths for the dead ends, live ends, or the average of both 

ends.  Therefore, the 180 data points represent the total number of transfer length analyzed, and 

each transfer length was the average transfer length of both ends of a beam.  For 15.2 mm 
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strands, 345 transfer length measurements were identified in the literature and then reduced to 

139 data points (Table 2-5).  This number represents the average transfer length for 139 beam 

ends.  

 

Table 2-4 - Transfer lengths from the literature for 12.7 mm strand. 

Literature Source 
Number 

of Tests 

Data 

Analyzed 

Reported Transfer 

Length, mm 
Average 

f’ci, 

MPa Min. Avg. Max. 

Cousins et al., 1990 20 20 813 1262 1880 35 

Mitchell et al., 1993 14 8 367 513 711 40 

Deatherage et al., 1994 16 16 457 602 914 33 

Russell and Burns, 1996 34 17 432 748 978 30 

Rose and Russell, 1997 30 15 300 392 587 29 

Russell and Burns, 1997 12 6 661 1050 1461 25 

Mahmoud et al., 1999 8 8 350 469 600 41 

Oh and Kim, 2000 36 18 463 606 826 40 

Hodges, 2006 6 3 343 474 699 36 

NCHRP-603, 2008 (A/B) 30 15 311 412 554 52 

NCHRP-603, 2008 (D) 31 16 391 597 937 53 

Bhoem et al., 2010 12 6 343 411 465 47 

Marti-Vargas et al., 2012 12 12 400 533 650 39 

Myers et al, 2012 8 8 351 460 630 39 

UA (release) 12 6 406 525 686 31 

UA (28-day) 12 6 394 510 610 46 

Total Number of Tests 293 180     

Note: Ramirez and Russell, 2008 (NCHRP R-603) 
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Table 2-5 - Transfer lengths from the literature for 15.2 mm strand.  

Literature Source 
Number 

of tests 

Data 

Analyzed 

Reported transfer 

length, mm 
Average 

f’ci, 

MPa Min. Avg. Max. 

Cousins et al., 1990 10 10 1118 1435 1727 33 

Mitchell et al., 1993 (*) 12 6 305 545 803 40 

Deatherage et al., 1994 8 8 889 1032 1270 33 

Russell and Burns, 1996 40 20 711 1016 1264 31 

Russell and Burns, 1997 13 8 762 1043 1245 28 

Oh and Kim, 2000 36 18 539 758 1022 40 

NCHRP-603, 2008 (A6) 22 11 475 667 785 51 

UA (release) 102 30 305 524 824 64 

UA (28-day) 102 28 305 532 833 89 

Total Number of Tests 345 139         

(*) strand 15.75 mm; UA: University of Arkansas 

 

The measured transfer lengths from the data set were plotted against the concrete compressive 

strength at release (f’ci) which ranged from 19 MPa to 155 MPa as shown in Figure 2-6 and 

Figure 2-7.  For most of the data collected from the literature, the concrete compressive 

strengths at release ranged from 19 MPa and 69 MPa.  However, there is a limited amount of 

data that includes concrete compressive strengths at release over 69 MPa [25].  Both figures 

show the decrease in transfer length as concrete compressive strength at release increases.  The 

figures also show the range of transfer lengths at lower concrete compressive strengths.  For 12.7 

mm strands, the transfer lengths ranged from approximately 250 mm to 1900 mm at 28 MPa.   

The highest transfer lengths were reported by Cousins et al. (1990).  These values may have been 

caused by unreported factors such as poor strand surface condition [4].  The data also show the 

lack of change in transfer length at high release strengths. 
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Figure 2-6. Transfer length of 12.7 mm strand from the literature. 

 

 

 

Figure 2-7. Transfer length of 15.2 mm strand from literature (** = 15.75 mm). 
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 Data reduction  

To determine the accuracy of the proposed equation, outliers in the data set were removed.  

Outliers were determined based on the average transfer length ratio and standard deviation.  The 

transfer length ratio was calculated by dividing the predicted transfer length by the measured 

transfer length.  Predicted transfer lengths were calculated using the ACI 318-14 equation and 

Eq. 2.  Some assumptions were made in order to use these equations.  These assumptions 

included a low relaxation wire, Grade 1862 strand (12.7 mm and 15.2 mm diameter) with an 

ultimate strength, fpu, of 1862 MPa, an initial prestress of 1397 MPa (fsi = 0.75fpu ), and an 

effective prestress after all losses of 1117 MPa (fse = 0.60fpu) [20].  Using these values, the 

predicted transfer lengths obtained using ACI 318-14 were 686 mm and 823 mm for 12.7 mm 

and 15.2 mm strand, respectively.     

Figure 2-8 and Figure 2-9 show the transfer length ratios (predicted/measured) versus the 

measured transfer lengths.  The transfer length ratios were calculated using the data set and the 

values using the ACI 318-14 equation.  These figures also show the average transfer length value 

(AV), the standard deviation (SD), the underestimated values (UV), and the overestimated values 

(OV), and the upper bound (AV + SD) and lower bound (AV – SD).  For the 12.7 mm strand, the 

average transfer length ratio was 1.32 with a standard deviation of 0.35.  Furthermore, since the 

predicted transfer length using the ACI 318-14 equation was constant for both strand sizes (686 

mm and 823 mm), the plotted ratios follow the same power trend line as shown in Figure 2-8 

and Figure 2-9.  Figure 2-10 and Figure 2-11 show the values predicted using Eq. 2.  Since the 

predicted transfer length values using Eq. 2 are dependent on the concrete strength at release 

(f’ci), the predicted transfer length is not constant unlike the values determined using ACI 318-

14.  This is reflected in the plot of the data in Figure 2-10 and Figure 2-11. 
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Figure 2-8. Transfer length ratio using ACI 318-14 for 12.7 mm strand. 

 

 

 

 

Figure 2-9. Transfer length ratio using ACI 318-14 for 15.2 mm strand. 
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Figure 2-10. Transfer length ratio using Eq. 2 for 12.7 mm strand. 

 

 

 

 

Figure 2-11. Transfer length ratio using Eq. 2 for 15.2 mm strand. 
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The following conclusions can be determined from Figure 2-8 and Figure 2-10 (12.7 mm 

diameter strand).  The average transfer length ratio using ACI 318-14 was 1.32, and its SD was 

±0.35 while the average transfer length ratio using Eq. 2 was 1.46 and its SD was ±0.38.  

Therefore, the ACI 318-14 equation overestimates transfer length by 32% while the proposed 

equation, Eq. 2, overestimates by 46%.  Although Eq. 2 had a greater standard deviation than 

ACI 318-14 (0.38 vs 0.35),  the total number of measured transfer lengths between UV and OV 

lines represents 39% of the data set analyzed.  This represents 10% more than the ACI 318-14 

equation.  The percentage of excluded data for the ACI 318-14 equation is 71% which represents 

10% more than the proposed equation, Eq. 2.   Therefore, more data are represented between the 

lower and upper bounds for Eq. 2 which means Eq. 2 better represents the measured transfer 

length values obtained from the literature than the ACI 318-14 equation. 

The same analysis was performed using the data set of 15.2 mm diameter strand.  The average 

transfer length ratio using ACI 318-14 was 1.17 with a SD of 0.44.  The average transfer length 

ratio was 1.12 using Eq. 2 and had a SD of 0.31.  For the 15.2 mm strands, Eq. 2 overestimated 

transfer length by 12% compared to 17% for ACI 318-14.  The total measured transfer lengths 

between the lower and upper bounds for Eq. 2 represents 72% of the data which is 9 percent 

more than that represented by ACI 318-14.   

 

 Influence of compressive strength on transfer length 

To determine the accuracy of Eq. 2, its predicted values were compared to those from other 

proposed equations.  The other proposed equations include those listed in Table 2-1 with the 

exception of the Buckner equation.  This equation was not included in the study because of its 

similarity to the Deatherage equation which was included.  In order to use some of the equations 
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shown in Table 2-1, additional inputs were necessary.  Values for fpu, fsi, fse were assumed in the 

previous task, but additional values were needed for the Cousins et al. equation.  Those values 

included the plastic transfer bond stress coefficient (U’t = 0.556), the bond modulus (B = 0.0815 

MPa/mm.), and the area of the prestressing strand (As = 140 mm2) for 15.2 mm diameter strand.  

Using these values, the transfer lengths were calculated, normalized with respect to the nominal 

strand diameter, and plotted as shown in Figure 2-12. 

 

 

Figure 2-12. Comparison of normalized transfer lengths. 
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For this analysis, the concrete compressive strength at release was varied from 28 MPa to 83 

MPa while the 28 day concrete strength ranged from 41 MPa to 110 MPa.   As shown in the 

Figure 2-12, the ACI 318-14, AASHTO, and Deatherage et al. equations are not dependent on 

concrete strength and therefore their predicted transfer length values are constant for all 

strengths. 

When the concrete strength at release and at 28-days were 28 MPa and 41 MPa respectively, all 

predicted transfer length values using the equations in Table 2-1 were greater than the predicted 

value using ACI 318-14.  On the contrary, when concrete strength at release is 62 MPa or more, 

all equations except for the Deatherage et al. equation predict a transfer length that is less than 

that predicted by ACI 318-14.  The UA equation, Eq. 2, predicts values that follow similar trends 

as the other equations (excluding ACI 318-14, AASHTO, and Deatherage et al.).  Eq. 2 predicts 

values which are slightly different than those of the NCHRP-603 equation.  For instance, Eq. 2 

predicts larger transfer length values at lower compressive strengths and shorter values at higher 

compressive strengths.   

It should be noted that Zia and Mostafa's equation for transfer length [7] was not recommended 

for compressive strengths over 55 MPa.  For release strengths of 62 MPa and 83 MPa, their 

equation predicts transfer lengths that are approximately 40 to 50% less than the minimum limit 

recommended by NCHRP-603 (40db).  In addition, Figure 2-12 shows two important 

conclusions which are:  

1. When the concrete strength at release and 28-days increases, the normalized transfer 

length decreases for all estimated values except those predicted using the ACI 318-14 

(R21.2.3) and Deatherage et al. equations.  Value predicted using these two equations 
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are constant due to the fact that the transfer length does not depend on concrete 

compressive strength. 

2. For compressive strength at release of 83 MPa, the transfer lengths for 5 of the 7 

proposed equations which are function of concrete compressive strength predict 

values that are lower or equal values than the minimum transfer length (40db) [6].  

The exceptions are the Kose and Burkett’s equation and Lane’s equation.  However, 

at a concrete strength (f’c) greater than 117 MPa, both equations predict transfer 

lengths less than 40db. 

 SUMMARY AND CONCLUSIONS 

The research project examined the measured transfer lengths of 57 prestressed concrete beams 

cast with a variety of different concrete types.  The concrete types included normal strength 

(NS), high strength (HS), self-consolidating concrete (SCC), ultra-high performance (UHP), and 

light weight (LW) concrete.  Fifty one beams were fabricated with 15.2 mm, Grade 270, seven 

wire low relaxation prestressing strand.  The concrete compressive strengths at release for those 

51 beams ranged from 23 MPa to 155 MPa.  Six beams were fabricated using 12.7 mm diameter 

strands with concrete compressive strengths at release between 24 MPa and 31 MPa.  Measured 

transfer lengths were determined using concrete surface strains along with the AMS method.  

The UA data was analyzed using the power regression in order to develop a new transfer length 

equation.  A power regression was chosen to develop this new equation because this repression 

provided a better fit than the linear regression.  This was due to the influence of concrete 

compressive strength on the transfer length.  In addition, measured transfer lengths from the 

literature were collected and analyzed and compared with ACI 318-14, ACI (50db), AASHTO 
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(60db), NCHRP-603 (40db), equations from the literature, and the proposed equation, Eq. 2.  

Based on the investigation, the followings conclusions were made: 

1. Transfer length in prestressed concrete members decreases as concrete compressive 

strength increases.  Research results also show that the ACI 318-14 and AASHTO 

equations overestimate transfer lengths in members containing concrete with high 

compressive strengths.  Therefore, concrete compressive strength should be a factor in 

predicting transfer length.   

2. Based on the results of the study, Eq. 2 and the ACI 318-14 equation are recommended 

when the concrete compressive strength at release is less than 34.5 MPa.  Based on the 

UA experimental data, 40db should be used as minimum transfer length for members 

containing concrete with compressive strengths at release greater than 34.5 MPa but less 

than 55 MPa.  When the concrete compressive strength at release is greater than 55 MPa, 

transfer length can be taken as 33db.  There is little change in transfer length as concrete 

compressive strength at release increases beyond 55 MPa.   

3. The proposed UA equation, Eq. 2, is based on experimental data with good strand bond 

(STSB values of 117 MPa or more).  For strands with poor surface quality, further 

investigation is needed in order to determine the applicability of the UA equation. 

4. Measured transfer length values collected from the literature were compared to values 

predicted using the ACI 318-14, AASHTO, and NCHRP-603 equations.  The predicted 

values were greater than the mean experimental values for approximately 18% of the 

beams containing 12.7 mm diameter strand and 40% for beams containing15.2 mm 

diameter strand.  
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5. The total data between the lower and upper bounds, [AVSD], was 53 % for the 

measured transfer length ratios using ACI 318-14 and 64% for the same ratio using Eq. 2 

for 12.7 mm diameter strand.  For 15.2 mm strands, the total data within this range was 

63% when ACI 318-14 was used and 72% when Eq. 2 was used.  Therefore, the 

proposed question, Eq. 2 better represents the experimental data than the ACI 318-14 

equation. 

6. Current equations do not adequately estimate transfer length for higher strength 

concretes.  Since the 1970’s, many researchers have recommended including concrete 

strength in the equation for transfer length.  The proposed equation, Eq. 2, does include 

concrete strength and more accurately estimates transfer length for beams containing high 

strength concrete. 
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Abstract:  

Fifty seven prestressed concrete beams were fabricated at the University of Arkansas (UA) to 

determine the influence of concrete strength on the development length of seven wire 

prestressing strand.  The variables considered in the investigation were the concrete compressive 

strength (f’c), which ranged from 34.5 MPa to 199 MPa, and the strand diameter, which included 

12.7 mm and 15.2 mm.  The beams were cast with concrete types which included self-

consolidating concrete, high strength concrete, lightweight concrete, and ultra-high performance 

concrete.  Development length was determined through flexural testing.  The research project 

also summarized the findings of several studies from the literature.  The measured development 

lengths were compared to those calculated using the American Concrete Institute (ACI 318-14) 

prediction equation for development length.  The results showed that compressive strength 

affects the development length and the ACI 318 equation overestimates development length.  

Also, a development length equation was developed and presented in the paper.   

Keywords: Prestressed concrete, strand bond, development length  
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 INTRODUCTION AND BACKGROUND 

When designing prestressed concrete members, engineers must determine the development 

length of the prestressing strands.  The development length is the sum of the transfer length and 

the flexural bond length.  The transfer length is the distance from the free end of the prestressing 

strand necessary to fully bond the strand to the concrete.  The flexural bond length, Lb, is the 

length required, beginning at the end of the transfer length, to fully develop the strength of the 

strand.  Therefore the development length, Ld, is the distance from the free end of the strand to 

the section where the nominal moment can be resisted [1].  The transfer length, flexural bond 

length, and development length are shown in Figure 3-1.  The ACI 318-14 (Equation 1.a) and 

AASHTO (Equation 1.b) equations for estimating development length are shown below. 

 

    
1

( )
20.7 6.9

se
d b ps se b

f
L d f f d           (1.a) 

 

2

6.9 3
d ps se bL f f d

  
  

 
            (1.b) 

 

The AASHTO equation is similar to the ACI 318-14 equation for development length, except the 

development length has been modified by a k factor (Eq. 1.b) as recommended by the 1988 

Federal Highway Administration (FHWA) memorandum [2-4].  The k factor amplifies the 

development length calculated by the ACI 318-14 equation.  For pretensioned members (panels, 

piles, etc) with a depth less than 0.60 m, k = 1.0 and for other pretensioned members with a depth 

greater than 0.60 m, k = 1.6.  For debonded strands, k = 2.0. 
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Figure 3-1. Strand stress vs. length, ACI 318-11 (R12.9) and AASHTO LRFD (C5.11.4.2-1). 

 

The ACI 318-14 equation was implemented in 1963 based on investigations conducted in the 

1950’s [1, 5], and later the ACI 318-14 equation was adopted by AASHTO LRFD Bridge Design 

Specifications (hereafter referred to as AASHTO) in 1973 [2, 3, 6].  Concrete technology has 

advanced since the equations were adopted, but the equations have remained unchanged.  For 

example, the compressive strength of the concrete used in the seminal strand bond research by 

Hanson and Kaar ranged from 26 to 54 MPa for the development length tests [5].  The use of 

high strength concrete has become common in prestressed concrete bridge girders.  Higher 

concrete compressive strengths can increase span length, decrease girder height, and eliminate 

the total number of girders in a bridge when compared to bridge girders cast with normal 

strength concrete [7].  Since the original equations were based on lower strength concrete and the 

compressive strength being used in current prestressed concrete applications is increasing, it is 

necessary to determine the applicability of the development equations given by the ACI318-14 

and AASHTO.   
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Since the inception of prestressed concrete research, researchers have investigated the bond 

between the concrete and prestressing steel.  The current equations provided by ACI 318-14 and 

AASHTO are a function of the effective prestress (fse), stress at nominal strength of the member 

(fps), and the diameter of the strand (db) [1, 6].  Updated equations have been published to amend 

the current equations, but most have not been implemented by ACI 318-14 or AASHTO.  

Current investigations have shown that the initial prestress (fsi) and concrete compressive 

strength, both at prestress release (f‘ci) and at 28-days (f‘c), affect both transfer and development 

lengths [8-12].  Researchers have also shown the measured transfer and development lengths for 

high strength concrete members are less than those values predicted using ACI 318-14 and 

AASHTO equations [9, 10, 13].  As such, the question has risen as to whether concrete 

compressive strength should be included as a principal variable in development length equations. 

Several variables have been investigated in order to improve the accuracy of the development 

length equation.  These variables include the concrete compressive strength at prestress release 

(f‘ci) and at the time of testing (f‘c), the initial prestress in the strand (fsi), the effective prestress in 

the strand after all losses (fse), the stress in the strand at nominal strength (fps), and the nominal 

strand diameter (db).  Although these variables are essential for development length, other 

variables can be considered, such as friction between the strand and concrete, type of strand 

release, strand surface condition, confining reinforcement around the strand, and type of loading 

[5, 8, 10, 11, 14, 15].  Table 3-1 contains several equations for transfer lengths and flexural bond 

lengths.   

 

Some of the proposed equations in Table 3-1 were developed for concrete with compressive 

strength at prestress release between 14 MPa to 55 MPa [11].  Other investigators have studied 
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the transfer and development lengths of prestressed concrete containing high-strength and 

normal-weight concrete which included compressive strengths up to 103 MPa [10] and 199 MPa 

[13, 16, 17].  These investigations focused on a wide range of concrete including conventional 

concrete and ultra-high performance concrete.  The research showed that increasing concrete 

strength correlated clearly with shortening of the transfer and development lengths.   

Some flexural bond length equations [3, 4, 11] use the same equation given by ACI-318-14 [1], 

but includes a modification factor, λ, which varies from 0.145 to 0.290 (1 to 2 for fpu and fse in 

ksi, and db in inches) [3].  For example, some researchers [11] recommend a modification factor 

of 0.181 (1.25 is for fpu and fse in ksi, and db in inches) while others [4] suggest 0.218 (1.5 is for 

fps and fse in ksi, and db in inches).  Some of the analytical equations for transfer length and 

flexural bond length which are shown in Table 3-1 include the plastic and elastic behavior [8].  

Through these studies, new variables were introduced which included the plastic transfer bond 

stress coefficient (U’t), the plastic bond stress coefficient for development (U’d), the bound 

modulus (B), and the area of the prestressing strand (As).     

Researchers at the University of Arkansas (UA) have examined the transfer length and flexural 

bond length of members cast with a variety of compressive strength [13, 16, 18-23].  These 

investigations focused on a wide range of concrete mixtures including conventional concrete and 

ultra-high performance concrete.  The research showed that increasing concrete strength 

correlated clearly with shortening of the transfer and development lengths.   

The types of concrete and the properties of concrete have changed since Hanson and Kaar’s 

seminal research on strand bond.  However, the equations to predict transfer and development 

have not changed.  This paper examined the development length of concrete with a wide range of 

compressive strengths in order to develop an updated equation for estimating the development 
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length of prestressing steel.  Once the equation was developed, data sets were collected from the 

literature to determine its accuracy when compared to the ACI 318-14 equation. 

 

Table 3-1 – Proposed equations for predicting development length (Ld = Lt + Lfb) from the 

literature (in MPa and mm). 
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 EXPERIMENTAL PROGRAM 

 Concrete Mixtures 

For the specimens cast at the UA, 11 different mixture proportions were developed.  The beams 

were cast with normal strength concrete (NSC), self-consolidating concrete (SCC), high strength 

concrete (HSC), lightweight self-consolidating concrete (LWSCC), and ultra-high performance 

concrete (UHPC) [18, 20-22].  In addition, NSC and HSC included subgroups with different 

coarse aggregates: Clay (CL), Shale (SH), and Limestone (LS).  For instance, NSCL represents a 

concrete mixture with normal compressive strength and contains clay coarse aggregate.  The clay 

and shale were lightweight aggregates, and the resulting concrete mixtures were also lightweight.  

The development of these concrete mixtures and their properties (fresh and hardened) has been 

discussed in detail in earlier publications by the authors [13, 16, 18-24]. 

The number of beams cast from each mixture and the number of flexure tests performed are 

presented in Table 3-2.  The mean compressive strength at release and at 28 days for each 

mixture is also provided in Table 3-2.  Fifty-one beams were cast with 15.2 mm diameter strands 

[18, 20, 22] and six beams were cast with 12.7 mm diameter strands [21].   The compressive 

strengths at release using 15.2 mm strand ranged from 23 MPa to 155 MPa, and the 28 day 

strengths ranged from 34.5 MPa to 199 MPa.  Furthermore, for beams containing 12.7 mm 

diameter strands, the compressive strengths at release ranged from 24 MPa to 37 MPa, and the 

28 day strengths were between 41 MPa to 52 MPa. 
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Table 3-2 – Number of trial beams, tests performed for transfer lengths, and concrete strength 

mean for release and time of testing. 

Concrete Series 

Number 

of Trial 

Beams 

Number 

of Ld 

tests 

f’ci 

Mean, 

MPa 

f’c 

Mean, 

MPa 

NSCL: Normal strength clay 4 8 31 39 

NSSH: Normal strength shale 5 10 28 42 

NSLS: Normal strength limestone 4 8 33 52 

HSCL: High strength clay 4 8 43 49 

HSSH: High strength shale 4 8 42 48 

HSLS : High strength limestone 4 8 48 64 

SCC-I : Self-consolidating concrete Type I 8 8 54 84 

SCC-III : Self-consolidating concrete Type III 5 5 51 76 

HSC : High strength concrete 6 6 64 85 

UHPC : Ultra high performance concrete 7 7 124 182 

LWSCC * : Lightweight self-consolidating concrete  6 6 31 46 

(*) 12.7 mm diameter strand 
 

   

 

 Beam Fabrication 

At the UA, 57 fully bonded, prestressed, precast beams have been cast.  Each beam had a 

rectangular cross-section of 165 mm by 305 mm and was 5.5 m in length.  The beams contained 

two, low relaxation, Gr.  1862 prestressing strands, located a distance of 254 mm, measured from 

the top (compression fiber) of the beam to the centroid of the strand.  Strand diameters of 12.7 

mm and 15.2 mm were included in the study.  Two No. 19, Gr. 414 reinforcing bars were located 

51 mm from the top of each beam.  The shear reinforcement consisted of No 6 smooth bars 

spaced at 150 mm as shown in Figure 3-2.  Two beams were cast simultaneously on a 15.2 m 

prestressing bed.  The strands were tensioned to 75% fpu, 1397 MPa. 
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(a) 

 

(b) 

Figure 3-2. Reinforcement details of a prestressed concrete beam. 

 

 Instrumentation and Testing 

Fifty-one prestressed concrete beams, using 15.2 mm strand, were tested in flexure resulting in 

76 embedment lengths (Le).  The remaining 6 embedment lengths were obtained from the six 

prestressed concrete beams containing 12.7 mm strand.  Twenty five of the fifty seven 

prestressed concrete beams were tested at both ends while the remaining beams were tested at 

only one end.   

Each beam was loaded with a single concentrated load at a pre-determined distance.  

Determination of the development length was an iterative process using different embedment 

lengths.  Before the start of each test, the first embedment length was assumed or was determined 
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using the value obtained from the ACI 318-14 equation.  The beams were tested to failure, and 

the failure mechanism was then determined.  The typical failure modes observed were flexure 

(FL), flexure/end slip (FL/SL), shear/flexure (SH/FL), shear/end-slip (SH/SL), flexural/end-

slip/shear (FL/SL/SH), bond (BD), shear/bond (SH/BD), or flexural/shear (FL/SH).  

The applied load was measured using a pressure transducer connected to the hydraulic actuator 

system.  The load was continuously monitored using a data acquisition system (DAS).  Linear 

variable differential transformers (LVDT) were attached to each strand at the end of the beam 

being tested.  Readings from the LVDTs were continuously recorded and monitored using a 

DAS in order to pinpoint the beginning of any strand slip [13, 16, 19].  If the beam did not 

exhibit strand slip at failure, and the beam failed in flexure with crushing in the compression 

fiber, a pure flexural failure was recorded.  This indicated that the development length was 

shorter than what was assumed.  A shorter embedment length was used for the next test.  

However, if strand slip was observed before the nominal moment capacity was achieved and a 

bond failure occurred, a longer embedment length was used for the next test.  The development 

length was considered to occur at the embedment length where the bond failure and flexural 

failure occurred at the same time while achieving the nominal moment capacity for the 

specimen.  This method for determining the development length has been employed by other 

researchers [2, 4, 5, 10, 14, 25, 26].   

In addition, beam deflection was recorded and monitored using a linear cable encoder placed 

between the hydraulic actuator and the top plate of the loading steel roller.  In general, for 

flexural failures, the measured moment capacity was greater than the nominal capacity, and the 

beam experienced large deformations prior to failure.  The beams experiencing a pure flexural 

failure experienced no strand end slip.  Shown in Figure 3-3 is a shear/end slip failure.  This 
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failure was characterized by noticeable shear cracks and end slip due to a partial loss of bond 

between the strands and concrete.  A flexural/end slip failure is characterized by typical flexural 

behavior with cracks occurring directly beneath and near the applied load.  There is also 

significant deflection after achieving the maximum load and corresponding moment.  Strand slip 

occurred generally prior to or immediately after achieving the nominal moment capacity. 

 

 

Figure 3-3. Shear/End-Slip failure of NSLS-3D (Photo by author). 

 DEVELOPMENT LENGTH ANALYSIS 

 Measured Development Length Data from UA 

Eighty-two development length tests were conducted, and the results are summarized in Tables 

3- 3, 3-4, and 3-5.   Shown in Tables 3-3 and 3-4 is information from the development length 

test for the normal (26 tests) and high strength concrete members (24 tests).  These beams were 
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subjected to flexural tests at both ends.  Likewise, data from the development length tests for 

self-consolidating concrete, high strength, ultra-high performance concrete, and light weight self-

consolidating concrete members are shown in Table 3-5.  The embedment length, Le is shown in 

each table.  This was the location of the point load for the flexural test.   

 

Table 3-3 – Development length test results of the NSCL, NSSH, and NSLS beams tested at 

both ends. 

Test 

No. 
Specimen 

Le, 
mm 

f’c, 

MPa 

fse, 

MPa 

fps, 

MPa 

Ld, 

mm 

Mn, 

kN-m 

Mmax, 

kN-m 

Failure 

Type 

1 NSCL-1D 1270 
35 1057 1792 2402 105 

106 FL 

2 NSCL-1L 1143 79 SH/SL 

3 NSCL-2D 1270 
46 1105 1809 2367 111 

121 FL 

4 NSCL-2L 1397 124 FL/SH 

5 NSCL-3D 1321 
36 1048 1789 2407 106 

109 SH/SL 

6 NSCL-3L 1219 96 SH/SL 

7 NSCL-4D 1219 
40 1068 1802 2406 108 

116 FL/SL/SH 

8 NSCL-4L 1524 123 FL 

9 NSSH-1D 1143 
34 1041 1790 2420 105 

115 FL/SL 

10 NSSH-1L 1270 114 FL/SL 

11 NSSH-2D 1245 
42 1085 1805 2388 109 

112 FL 

12 NSSH-2L 1016 108 SH/SL 

13 NSSH-3D 1016 
43 1090 1804 2379 109 

94 SH/SL 

14 NSSH-3L 1143 116 FL 

15 NSSH-4D 1207 
46 1088 1806 2387 110 

113 FL 

16 NSSH-4L 1143 114 SH/SL 

17 NSSH-5D 1143 
45 1077 1805 2400 109 

116 FL 

18 NSSH-5L 1016 94 SH/SL 

19 NSLS-1D 940 
46 1172 1808 2267 110 

107 SH/SL 

20 NSLS-1L 1003 121 FL/SL 

21 NSLS-2D 1016 
55 1186 1813 2257 112 

133 FL 

22 NSLS-2L 1092 127 FL 

23 NSLS-3D 1016 
54 1148 1812 2310 112 

123 SH/SL 

24 NSLS-3L 864 115 FL/SL 

25 NSLS-4D 1422 
54 1159 1814 2298 113 

93 SH/SL 

26 NSLS-4L 1194 129 FL 
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Table 3-4 – Development length test results of HSCL, HSSH, and HSLS beams (tested at both 

ends). 

Test 

No. 
Specimen 

Le, 
mm 

f’c, 

MPa 

fse, 

MPa 

fps, 

MPa 

Ld, 

mm 

Mn, 

kN-m 

Mmax, 

kN-m 

Failure 

Type 

27 HSCL-1D 1016 
49 1154 1811 2299 111 

114 FL/SL 

28 HSCL-1L 1270 124 FL 

29 HSCL-2D 1124 
52 1150 1812 2308 112 

116 FL 

30 HSCL-2L 1143 116 FL/SH/SL 

31 HSCL-3D 1080 
46 1158 1810 2292 110 

104 SH/SL 

32 HSCL-3L 1143 117 SH/SL 

33 HSCL-4D 953 
49 1154 1811 2299 111 

110 SH/SL 

34 HSCL-4L 1207 117 FL 

35 HSSH-1D 1016 
45 1148 1809 2304 110 

108 SH/SL 

36 HSSH-1L 1270 122 FL 

37 HSSH-2D 1080 
44 1134 1808 2320 109 

124 FL 

38 HSSH-2L 1143 121 FL 

39 HSSH-3D 889 
56 1126 1812 2343 113 

104 BD 

40 HSSH-3L 1016 108 FL 

41 HSSH-4D 1016 
48 1174 1812 2272 111 

118 FL 

42 HSSH-4L 953 106 BD 

43 HSLS-1D 1016 
61 1214 1819 2229 114 

123 BD 

44 HSLS-1L 1270 131 FL 

45 HSLS-2D 1207 
63 1217 1821 2228 115 

119 FL/SL 

46 HSLS-2L 1143 129 FL/SL 

47 HSLS-3D 1080 
64 1216 1821 2229 115 

118 FL 

48 HSLS-3L 1207 118 FL 

49 HSLS-4D 889 
67 1215 1822 2233 116 

107 BD 

50 HSLS-4L 1016 119 FL/SL 

 

The concrete compressive strength, f’c, at the time of the flexural test, the effective strand stress, 

fse, and the stress in the strand at nominal strength, fps, are shown in the tables.  The calculated 

development length, Ld, using ACI 318-14 is shown in the tables along with the calculated 

nominal moment capacity, Mn, and the maximum measured moment, Mmax, for all beams.   

Finally, the failure type for all beam tests is shown. 
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Table 3-5 – Development length test results of SCC, LWSCC, HSC, & UHPC beams tested at 

only one end. 

Test 

No. 
Specimen 

Le, 
mm 

f’c, 

MPa 

fse, 

MPa 

fps, 

MPa 

Ld, 

mm 

Mn, 

kN-m 

Mmax, 

kN-m 

Failure 

Type 

51 SCC-I-1 953 96 1216 1837 2266 122 135 FL/SL 

52 SCC-I-2 953 99 1209 1839 2280 123 144 FL/SL 

53 SCC-I-3 1016 78 1272 1834 2176 120 144 FL 

54 SCC-I-4 889 84 1241 1833 2219 119 143 SH/FL 

55 SCC-I-5 762 79 1266 1834 2185 120 139 FL/SL 

56 SCC-I-6 1016 81 1261 1835 2193 120 147 FL 

57 SCC-I-7 1143 76 1239 1832 2220 119 135 FL 

58 SCC-I-8 889 83 1252 1836 2209 121 140 FL 

59 SCC-III-1 826 75 1221 1833 2250 120 147 SH/FL 

60 SCC-III-2 889 71 1219 1833 2252 120 153 FL 

61 SCC-III-3 826 71 1211 1833 2263 120 125 FL/SL 

62 SCC-III-4 889 75 1214 1834 2262 120 145 FL 

63 SCC-III-5 762 89 1216 1832 2254 119 115 SH/FL 

64 HSC-1 889 87 1264 1837 2194 122 149 FL 

65 HSC-2 762 88 1263 1835 2191 121 154 FL 

66 HSC-3 889 86 1261 1833 2190 120 138 SH/FL 

67 HSC-4 1016 87 1254 1832 2197 119 143 FL 

68 HSC-5 762 74 1250 1834 2209 120 137 FL/SL 

69 HSC-6 1194 90 1244 1835 2220 121 151 FL 

70 UHPC-1 635 193 1278 1846 2194 180 227 FL/SL 

71 UHPC-2 508 199 1277 1846 2196 186 * FL 

72 UHPC-3 635 119 1300 1847 2163 111 193 FL/SL 

73 UHPC-4 635 186 1307 1846 2151 173 226 FL 

74 UHPC-5 889 195 1310 1847 2150 182 197 FL/SL 

75 UHPC-6 1143 191 1305 1846 2154 178 174 FL 

76 UHPC-7 1524 192 1304 1846 2155 180 175 FL 

77 LWSCC-1 1143 47 1181 1829 1921 85 104 FL 

78 LWSCC-2 889 41 1155 1829 1952 84 102 SH/BD 

79 LWSCC-3 762 50 1187 1829 1914 85 96 FL 

80 LWSCC-4 699 43 1174 1829 1930 85 94 FL 

81 LWSCC-5 635 44 1214 1830 1881 85 83 FL/SL 

82 LWSCC-6 699 52 1205 1830 1893 86 97 FL 

(*) exceeded capacity of load actuator 

12.7 mm strand was used in specimens LWSCC  
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Figure 3-4 shows the normalized embedment length factor (ke) for all the tests.  ke is the ratio 

between the measured embedment length and strand diameter (Le/db).  Also, the normalized 

predicted development length factor (kp) is the ratio of the predicted development length from the 

ACI 318-14 equation and the strand diameter (Ld/db).  This is also shown in Figure 3-4.  Those 

values were normalized in order to compare the development lengths of the two strand diameters 

(12.7 mm and 15.2 mm) that were examined in this investigation.  As shown in Figure 3-4, the 

predominant failure mode was pure flexural failures (FL), which represented 47.6% of the 

results.  This was followed by flexural/end-slip failures (FL/SL) with 20.7%.   

 

 

Figure 3-4. Development length test results for each case of failures. 

 

The lower and upper values of the ke are 33 and 100 are also shown in Figure 3-4.  These values 

were found in the ultra-high performance concrete types and in the normal strength concrete 

types, respectively.  Beams with the greatest compressive strength had the lowest ke, and ke 
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generally increased as compressive strength decreased.  The shortest embedment length tested 

was 33db which was in the UHPC specimens, and the longest embedment length tested was 

100db which was for the normal strength specimens.  When using ACI 318-14 to predict 

development length, the kp values range from 141 to 159 as shown in Figure 3-4.  According to 

these values, the predicted development length is conservative.  This is evident in the difference 

between the largest ke of 100 using the measured values and the smallest value of 141 using the 

development length predicted from ACI 318-14. 

 

 Equation development 

The results of development length tests for each series are summarized in Table 3-6.  In each set 

of tests, at least one beam exhibited strand slip before the nominal moment capacity (Mn) was 

achieved, and at least one failed without strand slip occurring.  When the moment causing strand 

slip (Mslip) and the nominal moment capacity (Mn) occurred at the same time, that particular 

embedment length was taken as the development length.  Although shear failures at short 

embedment lengths made determination of the development length difficult at times, comparing 

the Mslip to Mn allowed the researchers to determine the development length [13, 16, 19]. 

As previously mentioned, the development length is the sum of the transfer length and flexural 

bond length.  In order to develop a new equation for development length, the flexure bond length 

must first be determined [5, 27].  Flexural bond length analyses are complicated because not all 

embedment length data can be considered in the statistical analysis.  As explained previously, the 

embedment length can only be taken as the development length when the failure occurs in both 

bond and flexure simultaneously while reaching the nominal moment capacity (Mn).   
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Table 3-6 – Reduction of the UA data set of embedment length. 

Beam 

Series 
Specimens 

Le,              

mm 

f’c, 

MPa 

fse, 

MPa 

fps, 
MPa 

Mn, 

kN-m 

Mmax, 

kN-m 

Mslip, 

kN-m 

NSCL 4 1295 39 1069 1798 108 109 93 

NSSH 5 1134 42 1076 1802 109 110 103 

NSLS 4 1068 52 1166 1812 112 119 90 

HSCL 4 1117 49 1154 1811 111 115 103 

HSSH 4 1048 48 1146 1810 111 114 98 

HSLS 4 1103 64 1215 1821 115 120 111 

SCC-I 5 953 84 1244 1835 121 141 117 

SCC-III 8 838 76 1216 1833 120 137 125 

HSC 6 919 85 1256 1834 120 146 123 

UHPC 7 853 182 1297 1846 170 199 198 

LWSCC* 6 804 46 1186 1829 85 96 83 

*: strand 12.7 mm  

 

A flexural bond length equation was obtained using a power regression analysis and is shown in 

Figure 3-5.  In this figure, the flexural bond length is plotted versus values of “x”.  The flexural 

bond length was taken as the difference between embedment length and measured transfer length 

at testing time or 28 days, and these values were plotted against values of factor “x”, defined as
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A linear and power regression analysis was performed in order to calculate an appropriate 

flexural bond length.  The exponent value, however, was modified from -0.40 to -0.55 in order to 

use the same value as previously proposed for transfer length [17].  Finally, the flexural bond 

length equation is given by: 
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Figure 3-5. Flexural bond length analysis. 

 

The proposed transfer length equation developed in a previous study is shown below in Eq. (3) 

[17, 28].  Therefore, the development length equation (UAPE) is then given by Eq. (4). 
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 Development Length Data from Literature 

A data set of embedment lengths (Le) has been collected from the literature [4, 9, 10, 12, 27, 29-

31].  This data set is shown in Table 3-7 and includes the results of 188 specimens.  This data set 

is comprised of 103 specimens cast with 12.7 mm strand and 85 specimens cast with 15.2 mm 
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strand.  As shown in Table 3-7, some researchers reported only the average value of the 

embedment length, not a specific development length.  In order to analyze all the data in the 

same conditions, the UA data set was reduced from 82 to 57 specimens.  Table 3-7 shows the 

lower and upper values for embedment length and concrete strength at the time of testing.  The 

embedment lengths range from a low of 508 mm reported by the UA and to a high of 2946 mm 

reported by Deatherage et al.  The concrete strength at the time of testing ranged from 31 MPa, 

reported by Mitchell et al., to 199 MPa reported by the UA.   

 

Table 3-7 – Data set from the literature. 

Source 

Strand 

size, 

 mm 

S
p
ec

im
en

s 

Reported Results from the Experimental 

Procedure 

Embedment Length 

(Le), 

mm 

Concrete strength at 

testing time (f'c), 

MPa 

Lower Avg. Upper Lower Avg. Upper 

Mitchell et al., 1993 [9] 12.7 12 650 1021 1600 31 59 89 

Deatherage et al., 1994 

[4] 
12.7 16 1768 1962 2337 37 42 52 

Mahmoud et al., 1999 

[27] 
12.7 8 750 775 800 35 48 63 

Hodges, 2006 [30] 12.7 6 1524 1676 1981 44 45 45 

Ramirez and Russell, 

2008 [10] (A/B) 
12.7 16 1168 1492 1854 49 71 100 

Ramirez and Russell, 

2008 [10] (D) 
12.7 19 1168 1561 1854 49 76 100 

Marti-Vargas et al., 2012 

[12] 
12.7 12 600 688 850 43 64 75 

Myers et al., 2012 [29] 12.7 8 1473 1664 1854 40 52 64 

University of Arkansas 12.7 6 635 804 1143 41 46 52 

Mitchell et al., 1993 [9] 15.75 12 676 1154 1864 31 58 89 

Deatherage et al., 1994 

[4] 
15.2 8 1890 2255 2946 35 45 55 

Ramirez and Russell, 

2008 [10] (A6) 
15.2 14 1473 1876 2235 49 63 101 

University of Arkansas 15.2 51 508 1010 1524 34 80 199 

Note: Ramirez and Russell [10] (NCHRP R-603) 
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The distribution of the ke values for the data set are plotted in Figure 3-6a.  As previously 

discussed, ke is the ratio between the measured embedment length and strand diameter (Le/db).  

For the measured data, the mean ke was 97 with a standard deviation of 38.  Approximately 68 

percent of the data set from the literature falls between -1.0 and +1.0 standard deviation from the 

mean.  Notice also that 11 percent of the data set falls between -1.0 and -1.7 and another 15 

percent between +1.0 and +2.6.  Approximately 6 percent of data set falls outside the standard 

normal curve.  According to this analysis, the most probable development length is found 

between 59db and 135db (which is 97  38). 
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(a) Dataset (µ= 97 and σ = 38) 

 

(b) ACI-318 (µ = 156 and σ = 9) 

 

(c) UA proposed equation (µ = 136 and σ = 27) 

Figure 3-6. Standard normal distribution with z-scores of -1 and +1 indicated. 
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 Development Length Comparison of Measured and Predicted Lengths 

The data set obtained from the literature and shown in Table 3-7 was used to compare the 

accuracy of the UAPE to the ACI 318-14 equation.  Using the ACI 318-14 equation to predict 

development length, the kp values were plotted in Figure 3-6b.  As previously mentioned, kp 

represents that ratio of predicted development length to strand diameter.  For some cases, values 

for fps and fse were not reported and were assumed to be fps = 1862 MPa and fse =1117 MPa, 

respectively.  As shown in Figure 3-6b, the mean kp was 156 with a standard deviation of 9.  

Approximately 68 percent of the data set from the literature falls between -1.0 and +1.0 standard 

deviation from the mean.  Notice also that 11 percent of the data set falls between -1.0 and -1.7 

and another 16 percent between +1.0 and +3.6.  Approximately 5 percent of data set falls outside 

the standard normal curve.  According to this analysis, the most probable development length is 

between 147db and 165db, 

A similar analysis was performed using the data set shown in Table 7 and the UAPE.  The kp 

values using the UAPE are shown in Figure 3-6c.  The mean kp was 136 with a standard 

deviation of 27.  Approximately 68 percent of the data set from the literature falls between -1.0 

and +1.0 standard deviation from the mean.  Also, 14 percent of the data set falls between -1.0 

and -2.8 and another 16 percent between +1.0 and +2.1.  Approximately 2 percent of data set 

falls outside the standard normal curve.  According to this analysis, the most probable 

development length is between 109db and 163db, 

There are differences between predicted values of the two equations when using the data set.  

The mean development length using the ACI 318-14 equation was 156db, and for the UAPE, the 

mean value was 136db.  Both mean values are greater than the actual mean of the data set which 

was 97db.  When comparing the two equations, the mean value predicted using the UAPE was 
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closer to the measured mean than the values predicted using ACI 318-14.  This analysis also 

indicates that the standard normal deviation generated by UAPE is more accurate than the ACI 

318-14 equation.  For the UAPE, only 2 percent of data are outside of the normal curve, 

compared to 5 percent for the ACI-318 equation. 

Another analysis was performed using the data shown in Figure 3-6.  In Figure 3-7, the three 

normal distributions were superimposed so that the intersection points between the three curves 

could be determined.  The area between the intersection points represents an area where the 

development length can be found with a 41 percent probability.  This area bridges the gap that 

exists between the experimental results and the results from ACI 318-14.  These points represent 

a development length of 111db to 143db.   

 

 

Figure 3-7. The normal distribution with different means and unequal standard deviation. 
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The ratio of the measured development lengths to predicted values to ke values are plotted in 

Figures 3-8 and 3-9.  In Figure 3-8, the predicted value was obtained using ACI 318-14, and in 

Figure 3-9 the predicted development length was calculated using UAPE.  Shown in both 

figures are the average value (AV) of the ratio, its standard deviation (SD), the underestimation 

value (which are all ratios less than the average value), the overestimation value (which are all 

ratios that are greater than 1.0), the upper bound (AV+SD), and the lower bound (AV-SD).   

As shown in the Figure 3-8, the data follow a trend which is increasing ke as the ratio of 

measured to predicted development length also increases.   The AV for the data is 0.62 with a 

standard deviation of ± 0.25.  Approximately 9 percent of data were considered overestimates 

because their ratio of measured to predict was greater than 1.0.  Underestimated values 

accounted for 56 percent of the data and were those with a ratio less than 0.62, which was the 

average value. 

The ratio of measured to predicted using the UAPE is plotted versus ke in Figure 3-9.  Although 

this data follows the same general trend as that shown in Figure 3-8, the trend is not as 

pronounced.  The AV for the data is 0.72 with a standard deviation of ± 0.27.  For this data, the 

amount of data classified as an overestimation and underestimation values represented 19% and 

55% of data, respectively.   

When comparing the two figures, 65 percent of the data fell between the upper and lower bounds 

for the UAPE compared to 60 percent of the data when using ACI 318-14.  Based on those 

results, the UAPE better estimates development length for the data set than the ACI 318-14 

equation.   
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Figure 3-8. Relationship between ACI 318-14 ratio and the normalized embedment length 

factor. 

 

 

Figure 3-9. Relationship between UAPE ratio and the normalized embedment length factor. 
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In Figures 3-8 and 3-9, a vertical line was plotted at a ke of 100.  This value was chosen because 

a normalized embedment length factor, ke, of 100 is considered to be the lowest value for 

development length [10].  Using this vertical line along with the data in the figures, some 

conclusions were made.  When using ACI 318-14 to predict development length, 19 percent of 

data set fell between the lower and upper bounds and to the right of the ke of 100 vertical line.  

When the UAPE was used to predict development length, 26 percent of the data set fell between 

these bounds.  A larger percentage of the data falls within the bounded area when using the 

UAPE.  Therefore the UAPE better represents the data and more accurately represents the 

measured data than the predicted values from the ACI 318-14 equation.   

 

 Influence of Concrete Strength on Development Length 

The development lengths predicted using the UAPE was compared to values predicted using the 

proposed equations in Table 3-1.  For this analysis, some inputs were assumed to demonstrate 

the relationship between development lengths and compressive strength.  Values of fpu, fsi, and fse 

had been assumed in previous tasks, but other values were required and were taken from Cousins 

et al.  These included the plastic transfer bond stress coefficient (U’t = 0.556), the plastic 

development bond stress coefficient (U’d = 0.110), and the bond modulus (B = 0.0815 

MPa/mm.).   Using these values, the predicted development lengths from each author were 

calculated, normalized with respect to the nominal strand diameter, and plotted as shown in 

Figure 3-10.  For each equation, the concrete compressive strength at release ranged from 28 

MPa to 83 MPa while concrete strength at 28-days ranged from 41 MPa to 110 MPa.  When the 

concrete strength at release and 28-days were 28 MPa and 41 MPa, respectively, 37.5 percent of 

the ke were less than that predicted by the ACI 318-14 equation.  At release strengths of 62 and 
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83 MPa, 75 percent of the ke were less than those predicted by ACI 318-14.  These results show 

that the ACI 318-14 equation better estimates development length at lower compressive strengths 

than at high compressive strengths. 

 

 

Figure 3-10. Comparison of normalized development length factors. 

 

Figure 3-10 reveals two important conclusions.  The first is when concrete strength at release 

and at 28-days increases, ke decreases for all equations where concrete strength is a variable.  For 

the ACI 318-14 and Deatherage et al. equations, the predicted values are constant because in 

those equations, the transfer length and flexural bond length are not dependent on concrete 

compressive strength.  For the Zia and Mostafa and Deatherage et al. equations, there is little 
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change in development length as concrete strength increases.  In these two equations, concrete 

strength is only a factor in the transfer length portion of their development length equations.  The 

second conclusion is related to the effect of high strength concrete on the development length.  

For all proposed equations which consider concrete strength at release and at 28 days, the 

predicted development length is less than or equal to the 111db that was proposed as the 

minimum development length in this investigation. 

 SUMMARY AND CONCLUSIONS 

This study measured the embedment lengths and therefore determined the development lengths 

for 57 prestressed concrete beams.  The beams were categorized into five groups.  These groups 

included normal strength (NS), high strength (HS), self-consolidating concrete (SCC), ultra-high 

performance (UHP), and lightweight (LW) concrete that consisted of different types of aggregate 

and compressive strength.  Fifty one beams were fabricated with 15.2 mm, Grade 270, seven 

wire low, relaxation prestressing strand.  For all beams, the concrete strengths at release ranged 

from 23 MPa to 155 MPa.  Six beams were fabricated using 12.7 mm diameter strand with 

concrete strengths at release between 24 MPa and 31 MPa.  The University of Arkansas data was 

analyzed using linear and power regression in order to develop a new flexural bond length 

equation which is shown below in Eq, (5).   

0.55

'
66.5

ps se

b b

c

f f
L d

f

 
  

 
      (5) 

 

In addition, data of measured embedment lengths from the literature was collected, analyzed, and 

compared with values predicted using ACI 318-14 and UAPE.  Also, proposed development 
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length equations were taken from different researchers and compared with the UAPE equation.  

The results showed how development length is influenced by the concrete strength.  Based on the 

following investigation, the following conclusions were made: 

1. This investigation affirms that development length in prestressed concrete decreases as 

compressive strength increases.  Therefore, concrete compressive strength should play a 

role in predicting transfer length and flexural bond length since the ACI 318 and 

AASHTO equations tend to overestimate development lengths for high compressive 

strengths. 

2. The data set of measured embedment lengths collected from the literature were compared 

with values predicted by the ACI 318-14 and the UAPE equations.  The standard normal 

distribution generated by the UAPE linked the area between the data set from the 

experimental data with the predicted values of ACI 318-14.  The “linked area” represents 

a probability of 41 percent that a development length falls in that region.  The lower 

intersection point, which is 111db, between the normal distribution of the data set and the 

predicted values of the UAPE, is the proposed minimum value for development length.  

3. The proposed UA equation (UAPE) was used to estimate the development length for 

concrete mixtures with a range of compressive strengths at release and at 28 days of age.  

The results showed that the UAPE better estimates the flexural bond length than the ACI 

318-14 and AASHTO equations. 

4. The analysis of the ratio of measured to predicted development lengths for the ACI 318-

14 and UAPE equations indicates that 65 percent of the data set is found between the 

upper and lower bounds when using the UAPE to predict development length.  When 

using the ACI 318-14 equation, 60 percent of data set is located between the bounds.   
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5. Using the data set from the literature and that from the University of Arkansas, the study 

has shown that the current equations do not adequately estimate development length for 

higher strength concretes.  Of the proposed equations, the UAPE best estimates the 

development length of prestressed members cast with high strength concrete.  

 

ACKNOWLEDGMENT 

Financial support from the Mack-Blackwell Rural Transportation Center (MBTC) at the 

University of Arkansas is gratefully acknowledged.  The authors would like to thank Insteel 

Industries Inc. for providing the strand for this research. 

 

 

 

 

 

 

 

  



www.manaraa.com

71 

 

NOTATION 

As  area of the prestressing strand (mm2) 

db diameter of the strand (mm) 

f‘ci concrete compressive strength at prestress release (MPa) 

f‘c concrete compressive strength at 28-days or time of testing (MPa) 

fsi initial prestress (MPa) 

fse effective prestress (MPa) 

fps stress at nominal strength of the member (MPa)  

Lfb flexural bond length 

Le embedment length (mm) 

Ld development length (mm) 

ke normalized embedment length factor 

kp normalized predicted development length factor 

U’t plastic transfer bond stress coefficient  

U’d plastic development bond stress coefficient  

 B bound modulus (MPa/mm) 
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Abstract 

In pretensioned concrete members, the bond between prestressing strands and concrete in the 

transfer zone is necessary to ensure the two materials can work as a composite material.  This 

study develops a computer program based on the Thick-Walled Cylinder theory to predict the 

bond behavior within the transfer zone.  The bond was modeled as the shearing stress acting at 

the strand-concrete interface, and this generated a normal stress to the surrounding concrete.  The 

stresses developed in the concrete often exceeded its tensile strength, which resulted in radial 

cracks at the strand-concrete interface.  These cracks reduced the concrete stiffness and 

redistributed the bond strength along the transfer zone.  The developed program was able to 

determine the bond stress distribution, degree of cracking, and transfer length of the prestressing 

strands.  The program was validated using a data set of transfer lengths measured at the 

University of Arkansas and a data set collected from the literature.   

Keywords: pretensioned concrete, transfer length, strand bond, thick-walled cylinder, crack 

width. 
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 INTRODUCTION AND BACKGROUND 

Pretensioned concrete has been used extensively in buildings and bridge structures since the 

1950's.  In the design of pretensioned members, determining the transfer length is needed for 

calculating concrete stresses at release and quantifying shear strength at the ultimate state.  

Transfer length is the required length to transfer the prestress in the prestressing strands to the 

concrete.  The prestressing force is transferred to the concrete by the bond between the two 

materials.  The bond is a fundamental factor, which enables the strands and concrete to work as a 

composite material [1].  Studies have shown that bond strength is affected by many factors [1-8], 

including strand surface conditions [9], size of the strands [10], concrete compressive strength 

[11], type of release [4], concrete cover [12], cement content and water to cement ratio [8], and 

strand configuration [8, 13, 14].  The effects of these factors on strand bond have been validated 

by analytical and experimental studies [15].  While most studies have determined that the 

transfer length of prestressing strands is an indicator of strand bond, the number of studies that 

directly quantifies the bond-strength modeling at the strand-concrete interface is limited [16-21].  

That existing numerical models and programs propose complex procedures to quantify the 

nonlinear interaction between the prestressing strands and concrete.  Therefore, more research is 

needed to develop a simple a reliable technique to efficiently quantify the interaction and 

precisely predict the transfer length.   

Prestressing steel can be considered as a homogeneous material in an analytical analysis, and its 

properties are generally well defined by ASTM-A416 / A416M-15 [22].  Concrete, on the other 

hand, is a heterogeneous material consisting of cement mortar and aggregates.  Concrete 

properties depend on many variables and are difficult to define accurately.  However, concrete 

can be assumed to be a homogeneous material for general applications in many civil engineering 
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structures, and this assumption is commonly accepted in the literature [23, 24].  The stress-strain 

relationship of concrete is nonlinear, and it is different in compression versus in tension.  

Prestressing steel is used exclusively in tension, and its stress-strain relationship is represented 

by a nonlinear curve [25]. 

The bond at the strand-concrete interface is dependent upon the properties of prestressing steel 

and concrete.  The properties of the prestressing steel depend on the strain state of the material 

[25-27].  The concrete exhibits a high nonlinear behavior at higher compressive-stress levels and 

at the tensile state because of cracking, yielding and crushing [24].  Several investigations have 

assumed a perfect bond between the concrete and the prestressing steel since there is no slip at 

the contact surface of the concrete and strand.  This assumption is used to simplify the 

calculation in pretensioned concrete structures using numerical methods, but it does not reflect 

the actual behavior of the materials. 

For simplification, the design aspects related to strand bond are often solved without considering 

the bond stress distribution [7].  In this paper, the bond acting at the strand-concrete interface 

was modeled using the principles of solid mechanics.  Previous studies determined that the stress 

level in the concrete after release often exceeds the concrete’s tensile strength [28, 29], which is 

responsible for the concrete cracking within the transfer zone.  Therefore, this study considered 

both cracked and uncracked regions adjacent to the strand within the transfer zone.  

The research aims at predicting the bond behavior within the transfer zone using the Thick-

Walled Cylinder theory.  A second-order equation that represents the relationship of post-peak 

stress and crack width [30] was upgraded to a third-order equation.  A computer program used to 

predict the transfer length and bond behavior was developed to analyze the cracked and fracture 
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zone.  The accuracy of the developed program was validated using a data set of transfer lengths 

measured at the University of Arkansas and a data set collected from the literature.  

 

 BACKGROUND 

A thick-walled cylinder, which is shown in Figure 4-1, is widely used for estimating the transfer 

length in pretensioned concrete beams [12, 28, 30].   

 

Figure 4-1 – Stress and displacements in thick-wall cylinder: (a) thick-wall cylinder (The z axis 

is perpendicular to the plane of the figure); (b) Stresses in cylindrical volume of thickness dz; (c) 

Radial displacement in cylindrical volume of thickness dz. 
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The cylinder thickness is constant and subjected to a uniform internal pressure p1, a uniform 

external pressure p2, and an axial load P.  In 1939, Hoyer and Friedrich [31] idealized a 

pretensioned concrete beam as a thick-walled cylinder as shown in Figure 4-2.   

 

Figure 4-2 - Prestressed concrete beams idealized as thick-walled cylinder. 

 

The researchers considered the anchorage to be a result of swelling of the prestressing steel or 

wires that were caused by Poisson’s ratio and proposed an equation to predict the transfer length 

of prestressing strands as shown in Eq. (1).  
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        (1) 

where Lt = transfer length; db = strand diameter; µ = coefficient of friction between strand and 

concrete; c  = Poisson’s ratio of concrete; 
p cE E   = modular ratio; 

p = Poisson’s ratio of 

strand; fsi = initial prestress in strand; Ec = elastic modulus of concrete; fse = effective prestress in 

strand after losses; Ep = elastic modulus of strand.  
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In the 1950s, Janney [21] developed an analytical model for the transfer length in which the 

prestressing steel was considered a solid cylinder, and the concrete was considered a hollow 

cylinder having the inner radius equal to the strand radius and an infinite outer radius.  Janney’s 

model was identical to Hoyer and Friedrich’s model, which used the thick-walled cylinder 

theory.  Based on this model, Janney developed an equation to predict transfer length as shown 

in Eq. (2).  

 1 1 ln
4
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t c

p c si

Ed f f
L

E f




    
     

   
       (2) 

Researchers have reported the applicability of using the thick-walled cylinder theory to predict 

the transfer length of prestressing strands [12, 17-19].  Most of the early investigations dealt with 

the transfer length of small wires of different sizes [21, 32].  Later studies [7, 17, 19, 31] on the 

bond of prestressing strands have dealt with multi-wire strands, including seven-wire, 12.7 mm 

and 15.2 mm diameter strand [11, 33].  Weerasekera [28] used these two strand sizes to develop 

a theory of bond action that used the principles of solid mechanics to predict the transfer length.  

The prestressing strand was considered as a solid cylinder, and the surrounding concrete was 

considered as a hollow cylinder.  This was achieved through the consideration of elastic analysis 

(uncracked region) and a cracked region.  The proposed transfer-length equation, Eq. (3), 

considered a distributed crack zone around the strand, and the concrete in the affected region was 

analyzed as an anisotropic elastic material.   
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where  fsi = initial prestress in strand (MPa);  Ab = nominal area of strand (mm2); Kf = constant 

factor depending on values of B0 = 3.055, F0 = 52320, m0 = 0.28; ft  = concrete’s tensile strength 

(MPa); cy = clear concrete cover (mm); f’ci = concrete’s compressive strength at release of the 

strands (MPa). 

 

Weerasekera [28] used Gopalaratnam and Shah’s equation [29] in order to further investigate the 

partially cracked and fully cracked regions.  Gopalaratnam and Shah [29] had investigated the 

tensile resistance of cracked concrete and proposed a power equation to calculate the tensile 

stress in the cracked regions.  Their findings have been used to study the crack propagation of 

concrete elements subjected to tension by making some modifications.  Mahmoud [30] assumed 

a simple second-order relationship between post-peak stress and crack width instead of using 

Gopalaratnam and Shah’s relationship [29].  Mahmoud [30] concluded this second-order 

relationship provided a good agreement with the measured values.  

A recent study conducted by Abdelatif et al. in 2015 [12] also affirmed the reliability of using the 

using the thick-walled cylinder theory to predict the transfer length of prestressing strands.  The 

researchers proposed an equation for the transfer length as shown in Eq. (4).  In this equation, 

the prestressing strand and concrete were assumed to have elastic behavior, and the bond 

between the strand and concrete was modeled using Coulomb’s friction law. 
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where A and B are shown in Eq. (4a) and (4b) respectively 
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      (4b) 

where rp = nominal radius of prestressing steel (mm); rc,1 = internal radius of concrete cylinder 

which equals to radius of strand after prestressing (mm); rc,2 = external radius of concrete 

cylinder (mm); Ap = total area of strand (mm2); Ac = cross sectional area of concrete (mm2); Ec = 

elastic modulus of concrete (GPa); Ep = elastic modulus of strand (GPa); fse = effective prestress 

in strand after losses (MPa); 
p  = Poisson’s ratio of strand; c  = Poisson’s ratio of concrete; and 

µ = coefficient of friction between prestressing steel and concrete 

 

Although analytical models have been developed to predict the transfer length of prestressing 

strands, most models assume that the tension stress has a linear behavior, and they do not 

consider the fracture zones occurring along the concrete-strand bond interface.  In this study, the 

behavior of the prestressing strands and the concrete in the transfer zone is evaluated.  The 

variation of strand stress, which is dependent on the stiffness of the concrete adjacent to the 

strands, will also be examined.  In this investigation, the proposed method by Mahmoud [30], 

which is a second-order equation to analyze the crack zone, is extended to the third-order 

because it better fits Gopalaratnam and Shah’s relationship.  Moreover, three type of cracks such 

as fully cracked, partially cracked, and uncracked are considered in the model, and the actual 

contact surface area and the effects of shrinkage are considered as well.  
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 RESEARCH SIGNIFICANCE 

A new method is proposed to improve the accuracy in quantifying the transfer length by 

considering several variables such as the number of cracks, concrete cover, and fracture criteria. 

A computer program was implemented based on the thick-walled cylinder theory to analyze the 

crack and fracture zone and predict the transfer length of prestressing strands.  The relationship 

of post-peak stress and crack width proposed by Mahmoud [30] was upgraded from a second-

order to a third-order equation.  A data set of 24 transfer lengths measured at the University of 

Arkansas and collected from the literature was used to validate the computer program. The 

research findings are then synthesized and reported.  

 

 MATERIAL PROPERTIES 

 Concrete 

Concrete compressive strength is a significant parameter in the design of pretensioned concrete 

structures.  The presence of micro-cracks at the interfacial transition zone between the coarse 

aggregate and the cement matrix makes the prediction of concrete strength more complex [34].  

However, the radial compressive stresses generated by the release of a tensioned strand normally 

do not exceed 60% of the concrete’s compressive strength (f’c) [25, 35, 36].  As a result, the 

concrete can be modeled as a linear elastic material in compression, and the elastic modulus (Ec) 

can be determined using Eq. (5) by [23, 24, 35, 36]. 

 

1.50.043c cE w f          (5) 

where w = unit weight of concrete (kg/m3); f’c = concrete’s compressive strength (MPa). 
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Concrete is stronger in compression than it is in tension.  Concrete’s tensile strength is 

approximately 10% of its compressive strength [24, 37].  This is a major factor that causes the 

nonlinear behavior of either conventionally reinforced or prestressed concrete structures.  The 

stress-strain response of concrete in tension is assumed to be linear prior to cracking with the 

same elastic modulus (Ec), and the concrete’s tensile strength at release of the prestressing 

strands is assumed to be equal to the modulus of rupture (ft) [23-25, 35, 36]. 

 

0.62t cf f          (6) 

where f’c = concrete’s compressive strength (MPa).  

 

In this investigation, the allowable compressive stress after prestress transfer was 0.60 cif   (where 

cif   is the concrete’s compressive strength at release of prestressing strands) as  recommended by 

ACI 318 [35] and AASHTO LRFD [38], although a value of 0.70 cif    has also been 

recommended [36, 39, 40].  The Poisson’s ratio of concrete is in the range of 0.15 to 0.20 [41] 

and is assumed to be equal to 0.15 when this ratio is not specified in the collected data. 

 

 Prestressing steel (strands) 

The elastic modulus (Ep) and Poisson’s ratio (vp) of prestressing strands are assumed to be 197 

GPa and 0.3 [38], respectively.  This study used 12.7 mm and 15.2 mm, Grade 1860, low-

relaxation prestressing strands.  These strands were tensioned to 1,396 MPa prior to casting the 

concrete. 
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 ANALYTICAL FORMULATION  

A thick-walled cylinder equation was used in this investigation which can be derived from 

Figure 4-1.b and Figure 4-1.c [42, 43] and detailed solutions are shown in Appendix A.   

 

 Bond Mechanisms in the Transfer Zone 

Prestress is transferred to the concrete through adhesion, Hoyer´s effect, and mechanical 

interlock [44, 45]. The two primary components of bond in the transfer region can be contributed 

to Hoyer´s effect and mechanical interlock.  Generally, adhesion is not included because it is lost 

once slip occurs.  Hoyer’s effect is the first primary component of bond and is due to the lateral 

expansion of the strand diameter, which induces frictional forces along the longitudinal axis of 

the strand [45, 46].  Mechanical interlock depends on the twisting of the strand about its 

longitudinal axis as it tries to slip through the concrete.  It is the second primary component of 

bond and occurs between the helical lay of the individual wires in the 7-wire strand and the 

surrounding concrete [45, 47].  

In the transfer zone, the bond between concrete and prestressing strand is generated by high 

radial pressures due to Hoyer’s effect as shown in Figure 4-3.  Using Coulomb’s friction law, 

bond stress (τ) can be expressed as a function of interface pressure (σi) and the coefficient of 

friction (μ) as shown in Eq. (7) [7, 12]. 

 

i          (7) 
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Figure 4-3 - Hoyer’s effect along the transfer length. 

 

Janney (1954) used the coefficient of friction values in prestressing steel wires that ranged from 

0.20 to 0.60 [21], whereas a coefficient of friction of 0.75 was used for seven-wire steel strands 

[28].  The coefficient of friction used in this investigation, however, has been collected from the 

authors reported in this investigation, and for the pretensioned concrete beams tested at the 

University of Arkansas, those values have been assumed as 0.45 and 0.50. 

 

 Uncracked Analysis 

In this analysis, both the concrete and strands are considered isotropic materials (elastic 

analysis).  The strand is modeled as a solid cylinder having a radius R1 while the concrete is 

modeled as a thick-walled cylinder having the inner radius R1 and the outer radius R2.  The radius 

R2 is equal to the clear concrete cover [7, 28]. 

Using the assumption of thick-walled cylinder theory, the expressions of stresses, strains, and 

displacements can be developed and solved using the constitutive law (stress–strain relationship), 

equilibrium and compatibility equations, and imposing boundary conditions.  The outer surface 

of the concrete cylinder is assumed to behave as a free surface (stress at this point will be zero) 
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while the stresses produced by the strand’s expansion are considered as a pressure developed at 

the strand-concrete interface.  Moreover, the drying shrinkage of concrete (εsh) produces a 

normal stress acting on the strand before prestress release, and the release generates longitudinal 

compressive stresses in the concrete at the level of strand (fcz).  This effect can reduce the contact 

pressure due to the Hoyer’s effect.  The compatibility of displacements, therefore, in the radial 

direction at the prestressing steel and the concrete can be used to develop the interfacial pressure 

as shown by: 

p p c c c

fp i i fcz sh             (8) 

where: 
p

fp  = increase in radius of strand due to the reduction in longitudinal stress from initial 

prestress fsi to effective prestress fse; p

i  = reduction in strand radius due to the uniform radial 

compression at interface σi; c

i  = increase in the inner radius of the thick-walled concrete 

cylinder due to the interface pressure σi; 
c

fcz  = increase in the inner radius of the thick-walled 

concrete cylinder due to the longitudinal compressive stress at the level of strand fcz; c

sh  = 

reduction in the inner radius of the thick-walled concrete cylinder due to drying shrinkage εsh.  

 

Each of the following parameters described above was extensively described by Mahmoud [30] 

and those parameters are explained in Appendix B.  Knowing all the parameters, Eq. (8) can be 

solved by the following equation as given below: 

 

 

 1

si se cz
p c sh

p c

i

p c

pr c

f f f

E E

K

E E

  





 






      (9) 
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where fsi = initial prestress in strand; fse = effective stress in strand after all losses; Ep = elastic 

modulus of strand in the longitudinal direction; Epr = elastic modulus of strand in the transversal 

direction (in this investigation this value is taken as Ep); νc = Poisson’s ratio for concrete; νp = 

Poisson’s ratio for strand; εsh = drying shrinkage coefficient as derived in Eq. (9.b); fcz = 

compressive stress in concrete at the level of the strand as derived in Eq. (9.c); Kc = a parameter 

shown in Eq. (9.a). 

   

 

2 2

1 2

2 2

2 1

1 1c c

c

R R
K

R R

   



      (9.a) 

The drying shrinkage coefficient can be estimated using AASHTO-LRFD [38] as shown below 

30.48 10sh s hs f tdk k k k         (9.b) 

where  

ks = factor for the effect of the volume-to-surface ratio,  1.45 0.0051 1.0s
Vk

S
    (V in mm3 

and S in mm2) 

khs = humidity factor for shrinkage,  2.00 0.014hsk H  ; the relative humidity (H) was 

assumed as 70%. 

kf = factor for the effect of concrete strength, 
'

35

7
f

ci

k
f




  (f’ci in MPa) 

ktd = time-development factor, 
'61 0.58

td

ci

t
k

f t

 
  

  
; t in days (t = 1-day at time of release) 

The concrete compressive stress at the level of the prestress strand (fcz) varies from zero at the 

end of the beam to a maximum value at the end of the transfer length and is estimated by: 

2
1 c

cz se p

g g

e
f f A

A I

 
   

 
 

      (9.c) 
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where fse = effective prestress in strand after losses; Ap = total area of the strand; Ag = cross 

section area of the concrete member; ec = eccentricity of the prestressing force; and Ig = moment 

of inertia of concrete section. 

 

 Cracked Analysis 

4.5.3.1 Behavior of Concrete in Tension 

Concrete is weak in tension.  The tensile stresses generated by Hoyer’s effect normally exceed 

the concrete’s tensile strength [28, 29].  Within the transfer zone, the concrete adjacent to the 

prestressing strand exhibits cracking at different stress levels.  The relationship between the post-

peak stress and crack width is shown below [29]: 

 

crkw

pe
  

        (10) 

where σ = post-peak tensile stress; σp = tensile strength (peak value of σ); λ = 1.01 (assumed 

value in [29]); k = 64.18 mm-1 [48]; wcr = crack width in mm; wo = 0.05 mm, which is the initial 

crack width at the shear plane. 

Eq. (10) can be re-written as shown in Eq. (11) [30].  In this equation, n is a degree polynomial 

equation.  Mahmoud [30] proposed a second-order equation (n = 2), and the corresponding curve 

is shown in Figure 4-4.  In this study, a third-order equation (n = 3) is proposed to increase the 

accuracy in predicting transfer length as discussed in later sections. 

 

1

n

cr
p

o

w

w
 

 
  

 
       (11) 
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Figure 4-4 – Analytical expressions used for modeling the stress-crack width relationship. 

 

4.5.3.2 Considerations of Fracture Zones Surrounding the Prestressing Steel 

The state of cracking around the strand caused by the internal pressure after strand release is 

shown in Figure 4-5.   

The state of cracking is divided into three zones, which includes the real cracked zone, the 

fracture zone, and the uncracked zone.  The first zone may occur as soon as the strand is 

released, so the concrete region adjacent to the strand is cracked due to high internal pressure.  

This region is defined as the distance from the strand surface to the radial crack at r = Rcr at 

which the crack width is 0.05 mm, and the hoop stress is considered to be zero for crack widths 

greater than 0.05 mm.  The fracture zone is the distance from Rcr to Rfr at which the hoop stress, 

which is transferred across the crack, varies from zero at r = Rcr and wo = 0.05 mm to the 

maximum value of ft, concrete’s tensile strength, at the effective crack tip where r = Rfr and wo = 
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0.  In this case, at a certain distance from the end, the concrete around the prestressing steel is 

considered partially cracked because of the decrease in pressure.  The uncracked zone extends 

from the effective crack tip (r = Rfr) to the outer surface of the concrete (r = R2), and the hoop 

stress decreases when the radius increases from r = Rfr to r = R2 according to the elastic theory of 

the thick-walled cylinder.  At further distances from the end of the strand, also, the surrounding 

concrete is not cracked because the pressure in this part is negligible.   

 

 

Figure 4-5 – Fracture zones around the prestressing steel. 

 

In this analysis, Mahmoud’s theory [30] was applied for the crack width (wa), which is assumed 

at the strand-concrete interface of the thick-walled cylinder and depends on the variations of 

strand radius (
p p

fp i  ) [where 
p

fp = increase in strand radius due to reduction in longitudinal 

stress from initial prestress fsi to effective prestress fse; and p

i  = reduction in radius of strand 
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due to the uniform radial compression at interface σi] and the assumed number of radial cracks 

(Nrc), which varies from 1 to 6 [30].  The crack width equation, therefore, is given by: 

 
 12
1

si se i
a p p

rc p pr

f fR
w

N E E


 

 
   

  

     (12) 

 

4.5.3.3 Compatibility Condition 

The cracked analysis is solved using an elastic analysis as discussed previously [30].  Eq. (8) is 

rewritten as: 

 
fr

p p c c c c c

fp i cr fr R fcz shu             (13) 

where 
c

cr = deformation of the real crack zone; 
c

fr = deformation of the fracture zone; and 
fr

c

Ru = 

radial displacement at r = Rfr. 

The elastic modulus of concrete in the cracked regions was assumed to be elastic.  The micro-

cracks generally occur around the strand, and the crack depth is less than a concrete cover of 75 

mm, as shown in Table 4-2.  There is no crack propagation through the prestressed concrete 

beam (from bottom to the top) because the initial prestress is transferred to the concrete along the 

strand.  The mechanical properties of concrete were calculated using the given equations in 

Section 4.1. 

 

4.5.3.3.1 Deformation of the real crack zone, c

cr  

The real crack zone is characterized by the condition where the tensile stress (σθ) is not 

transmitted across this zone because the crack width is greater than wo (initial crack width at the 
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shear plane).  The thick-walled cylinder equation for this zone can be written as Eq. (14) [28, 

30]. 

0r rd

dr r

 
          (14) 

Solving the first order differential equation and applying the boundary condition of σr = -σi at r = 

R1, an expression of radial stress (σr) is obtained as shown below: 

1
r i

R

r
           (15) 

The deformation of the real crack zone ( c

cr ) can be calculated using the following equations: 

1

crR

c

cr r

R

dr           (15.a) 

r
r

cE


         (15.b) 

1

1

lnc i cr
cr

c

R
R

E R


         (15.c) 

where 
c

cr = deformation of the real crack zone; R1 : inner radius; σi = interface pressure; Ec = 

elastic modulus of concrete; and Rcr = crack radius. 

 

4.5.3.3.2 Deformation of the fracture zone, 
c

fr  

In this zone, two cases, Case A and Case B, were considered in the analysis.  The second-order 

equation was explained by Mahmoud [30], and that idea was used to develop the third-order 

equation (n = 3).  The maximum hoop stress (  ) at the edge of the fracture zone (Rfr) is 

considered to be equal to the rupture strength of concrete (ft).  Thus, the hoop stress can be 

expressed by Eq. 16. 
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3

cr
t

fr cr

r R
f

R R


 
  

  
        (16) 

where  = hoop stress; ft  = concrete tensile strength; Rfr = fracture radius; r = radius in the radial 

direction; and Rcr = crack radius. 

 

CASE A: the hoop stress is obtained by solving the third-order equation (Eq. 16) which is 

shown below: 

 3 2 2 33 3t cr cr crk r r R rR R           (16.a) 

 
3

t
t

fr cr

f
k

R R



        (16.b) 

Substituting Eq. 16.a-b into Eq. A.1 (see Appendix A) and using a boundary condition of radial 

stress 1r i crR R   at crr R , an expression of radial stress (σr) is given as:  

43
2 2 31 3

4 2 4

cr
r i t cr cr cr

RR r
k r R rR R

r r
 

 
       

 
    (16.c) 

Where σi = interface pressure; r = radius in the radial direction; R1 = inner radius; kt = radial 

stress; and Rcr = crack radius. 

 

The total deformation of the fracture zone in the radial direction, therefore, is the integration of 

the radial strain εr (Eq. A.2) from r = Rcr to r = Rfr where the longitudinal stress z  has been 

neglected. 

1 1ln
frc i

fr

c cr

R
R k

E R

  
   

 
       (16.d) 
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where: 
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     (16.e) 

 

CASE B: if the crack width at the strand-concrete interface (wa) is less than or equal to 0.05 mm, 

then the real crack zone would not be formed, and the hoop stress is calculated using Eq. (12).  

The relationship between the crack width (wcr) at any point on the interface, the radius r, and the 

crack width wa can be expressed by: 

1

fr

cr a

fr

R r
w w

R R





       (17.a) 

where Rfr = fracture radius; R1 = inner radius; and r = radius in the radial direction. 

Using this value of wcr in Eq. (11) with n = 3, the hoop stress or tensile stress can be expressed 

by: 

     
2 3

2 3 23t fr fr frf k R r k R r k R r            (17.b) 

Where the constant factors are the following: 
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Substituting Eq. (17.b) into Eq. (A.1) and using a boundary condition of radial stress 
r i   at

1r R , an expression for radial stress (σr) is shown below: 

2 3
2 3 2 21 4

2 3 23

3

2 3 2 4
r i t fr fr fr fr fr fr

R kr r r
f k R k R rR k R R r R r

r r
 

      
                 

      
 

(17.f) 

where: 

2 2 3 2 2 3

4 1 2 1 1 3 1 1 1 23 1 1 1 1

1 1 3 1

2 3 2 4
t fr fr fr fr fr frk f R k R R R k R R R R R k R R R R R R R

     
              

     
 

(17.g) 

The deformation of the fracture zone in the radial direction is the integration of the radial strain εr 

from r = R1 to r = Rfr.  Thus, Eqs. (17.b-17.f) are used to calculate the deformation of the 

fracture zone as shown as: 

1 5
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R
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where: 
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4.5.3.3.3 Radial displacement of the uncracked zone, 
fr

c

Ru  

The tensile stress σθ at the inner surface of the uncracked zone must be taken as the value of 

rupture strength of concrete ft.  So that, the radial stress at r = Rfr can be given by: 

2 2

2

2 2

2
fr

fr

R t

fr

R R
f

R R






       (18.a) 

The radial displacement, then, at r = Rfr can be calculated using Eqs. A.2-A.3. 
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       (18.b) 

where 
fr  = the circumferential strain at r = Rfr. 

 

4.5.3.4 Contact Pressure, σi 

Knowing the displacement components of the compatibility Eq. 13, the contact pressure at the 

strand-concrete interface can be developed for the case of cracked analysis as following: 

 1
fr

p c c c

i fp i R fcz sh

j

k u
k

            (19) 

where: 
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Case A: 1ik k  and 
6jk k  

Case B: 5ik k  and 
7jk k  
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 ANALYTICAL PREDICTION OF TRANSFER LENGTH 

Measuring the transfer length of prestressing strands is time-consuming, and errors from the 

method of taking the readings and from the instrument calibration can exist.  Numerical 

modeling using the thick-walled cylinder theory is an alternative technique to predict the transfer 

length and calculate the contact pressures for different fracture zones at the strand-concrete 

interface.  Since the contact pressure i  is known, the bond stress  can be calculated for a 

particular x increment using Coulomb’s friction law.  Figure 4-6 shows the stresses on the 

prestressing strand and the finite-element idealization used in this analysis.  The incremental x  

required to transfer an incremental stress pxif  to the concrete can be calculated as following: 

4

3

p pxi

b i

A f
x

d 


 

 
 
 

        (20) 

Using a finite-element analysis, this expression can be expressed by: 

bi bif k x           (21) 

where Ap = strand area, bif  = bond stress around the strand surface.   

 

 

Figure 4-6 – Stresses on the prestressing strand: (a) Discretization of prestressing steel; (b) 

Finite element idealization for prestressing steel (kb is the bond stiffness). 
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The bond surface stiffness is represented by
4

3
bi b b ik d  

 
  

 
.  The coefficient λb is a bond 

factor that depends on strand diameter, number of radial cracks, and twisting angle of helical 

wire with respect to the center wire [49], strand surface and mechanical interlocking [50], axial 

and helical strain [49, 51], and concrete strength [17, 18].  This study found that the coefficient 

λb varied from 0.50 to 1.55.  As the variation of strand stress is equal to 
pxi bi pf f A   , the 

strand stress at section i+1, therefore, is calculated by the relation: 

   1 pxipx i px i
f f f


         (22) 

As a result, prestressing force and stress in the concrete at the level of the strand at section i+1 

are shown in the following equations, respectively: 

   1 1px i px i
P A f

 
        (23) 
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      (24) 

Transfer length, therefore, can be obtained from the summation of the calculated increments of 

x  from the free end of the beam. 

 

 IMPLEMENTATION OF A COMPUTER PROGRAM  

Equations presented in previous sections were implemented in a computer program due time 

necessary to complete the calculations by hand.  Using the computer program, the equations can 

be solved in a matter of seconds.  Figure 4-7 shows the major steps of the program that was 

developed to calculate the transfer length using the thick-walled cylinder theory.  Table 4-1 

presents the program notation and input data used in the program.  The program results are 

shown in Figure 4-8.a.   
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Numerical modeling of the transfer length in pretensioned concrete members generally consists 

of two important considerations: the constitutive laws and the finite-element method (FEM).  

The constitutive laws control the elastoplastic response of the simulated thick-walled concrete 

cylinder after the strand is released.  The compatibility of displacements in the radial direction at 

the interface of the prestressing steel and the concrete were assumed equal, and from this 

relationship, the interfacial contact pressure between strand and concrete can be calculated.  This 

calculation is an iterative process, therefore, a numerical procedure to calculate the internal 

contact pressure and the FEM in one dimension were implemented to calculate the bond, strand 

stress, prestressing force, and concrete stress at each iteration.   
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Figure 4-7 – Flowchart of the analytical model. 
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Table 4-1 –Program notation and input data 

Identifier          Definition Identifier          Definition 

NDB          Number of strands 

DB             Strand diameter 

FSI             Initial prestressing stress 

EP              Elastic modulus of strand 

PR_P          Poisson’s ratio of strand 

UNIT         Type of analysis (0 for U.S. 

units and 1 for international 

units) 

FCI            Concrete compressive strength at 

release 

EC             Elastic modulus of concrete 

FT              Concrete tension strength 

PR_C         Poisson’s ratio of concrete 

CX             Concrete cover at x axes 

CY             Concrete cover at y axis 

S                Spacing between strands 

B                Width of the beam 

H                Deep of the beam 

BLNG        Length of the beam 

FRICT       Coefficient of friction 

W0             Initial crack width 

NI              Number of iteration 

HR             Relative humidity 

TM            Time in days 

TA              Type of analysis 

NRC           Number of radial cracks 

Δx               Incremental of transfer zone 

NITER        Number of iterations 

wa                Crack width 

Bond(i+1)   Bond stress at section i+1 

FSI(i+1)      Effective stress at section i+1 

Pi(i+1)        Prestressing force at section i+1 

Fcz(i+1)     Concrete stress at level of the 

strand at section i+1 

LT(i+1)       Transfer length at section i+1 

Input Data: 

Row 1:  NDB, DB, FSI, EP, PR_P, UNIT        

Row 2:  FCI, PR_C               

Row 3:  CX, CY, S                                                                         

Row 4:  B, H, BLNG 

Row 5:  FRICT, W0, NI    

Row 6:  HR, TM                                                                                                                                

(Strand Properties) 

(Concrete Properties)   

(Position of a Strand, see Fig. 10)    

(Beam Section) 

(Factors for Fracture)  

(Factors for Shrinkage)   
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(a) 

 
(b) 

 

Figure 4-8 – (a) Numerical analysis of transfer length using the program TWC_LTDXv1; (b) 

Mechanical interlocking considered in the analysis. 
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Another consideration implemented in this program is that the perimeter of a strand is not equal 

to 
bd , which is for a perfect circle (see Fig. 4-8.b).  Therefore, the solid cylinder of radius R1 

has been defined from the nominal strand diameter, whereas bond stresses have been computed 

by considering the actual strand perimeter of 4/3
bd  (where db is the nominal strand diameter).  

In addition, the clear concrete cover (cy) and the effective strand cover (ceff, as defined in [7]) 

were taken from bottom fiber or lateral fiber to the surface of strand as shown in Figure 4-9.  

Also, the bond mechanism was multiplied by a factor (λb) which depends on the mechanical 

interlocking and other factors as explained previously.  The mechanical interlocking was 

idealized as a constant normal pressure around the strand (Figure 4-8.b).  Transfer length is 

calculated through an iterative process.  At each iteration, corresponding to a certain length, a 

contact pressure is calculated in order to calculate the bond stress, the strand stress, and the 

concrete stress at this length.  Having these values, concrete and strand strains can be calculated. 

 

 
 

Figure 4-9 – Idealization of the thick-walled cylinder. 
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 MODEL VALIDATION 

 Numerical example 

A data set of 24 beams obtained through experimental investigations conducted by several 

researchers is summarized in Table 4-2 [2, 4, 5, 8, 14, 15, 17, 18, 30, 51-54].  This table also 

includes the input data for the developed computer program.  For the pure-elastic analysis, 

variables needed for the input data were taken from Mahmoud [30] and Weerasekera [28] as 

follows: strand diameter db = 12.7 mm, initial prestress fsi = 1300 MPa, elastic modulus of the 

strand Ep = 200 GPa, Poisson’s ratio for strand vp = 0.30, concrete strength at release f’ci = 30 

MPa, Poisson’s ratio for concrete vc = 0.15, concrete cover cy = 46.35 mm, and beam cross 

section of 100 x 200 mm.  The distributions of radial and hoop stress at the free end of the beam 

are obtained using Eq. 18 and shown in Figure 4-10.a.  This figure shows that the tensile stress 

near the strand and along the circumferential direction is approximately 11 times greater than the 

concrete’s tensile strength at release while the radial stress is approximately 2.2 times greater 

than the concrete’s compressive strength at release.  However, cracking in the concrete around 

the strand occurs after release, which required a more refined analysis, was implemented in this 

investigation as shown in Figure 4-10.b.  This figure shows the three zones considered in this 

investigation for the case of specimen SS160-6 (see Table 4-2).  The result presented from this 

figure is calculated at station 200 (a distance of 199 mm from the free end), which gives the 

effective strand stress of 502.1 MPa.  The station represents the number of iterations in the 

program and for this example the increment is 1 mm.  At this station, the cracked zone, fracture 

zone, and uncracked zone are shown.  The cracked zone is where the hoop stress is zero, the 

fracture zone is where the hoop stress is increasing from zero to the concrete’s tensile strength at 

release, and the uncracked zone is where the hoop stress begins to decrease from the allowable 
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tensile strength at release.  Although this analysis may be complicated for beams with several 

strands, this analysis was simplified using the idealization of thick-walled cylinder (see Fig. 4-9). 

For instance, the stress presented in the overlapped region, which is the case for narrow strand 

spacing, was not considered in this analysis.  This region was treated as a simple, thick-walled 

cylinder with an effective thickness as shown in Figure 4-9. 

 

Table 4-2 – Input data used in the program 

Beam 

f’ci, 

MP

a 

Ec, 

GPa 
νc 

Ceff, 

mm 
µ 

fpi, 

MPa 

Ep, 

GPa 

db, 

mm 

As, 

mm2 

Number 

of 

strands 

 

SS150-4 [52] 26.0 22.9 0.20 63.50 0.45 1299.0 194.4 12.7 99.0 1 

13/31-1200 [5] 21.0 20.6 0.20 50.00 0.55 1442.0 204.9 12.7 99.0 1 

13/75-950 [5] 50.0 31.8 0.20 50.00 0.50 1367.0 204.9 12.7 99.0 1 

BS5 [30, 53] 35.0 26.6 0.15 50.00 0.75 1227.6 200.0 12.7 99.0 1 

M12-N-C3-1&2 [4, 54] 33.6 26.1 0.20 36.35 0.40 1402.1 200.0 12.7 99.0 1 

N-12-5 [18, 54] 35.0 26.6 0.15 56.35 0.50 1210.0 200.0 12.7 99.0 1 

C350/0.50 [2, 8, 14, 15] 26.1 23.0 0.20 50.00 0.60 1326.0 192.6 13.0 99.7 1 

C350/0.40 [2, 8, 14, 15] 46.7 30.8 0.20 50.00 0.60 1328.0 192.6 13.0 99.7 1 

C400/0.50 [2, 8, 14, 15] 24.2 22.1 0.20 50.00 0.60 1303.0 192.6 13.0 99.7 1 

C500/0.30 [2, 8, 14, 15] 54.8 33.3 0.20 50.00 0.60 1295.0 192.6 13.0 99.7 1 

SS160-6 [52] 28.9 24.2 0.20 63.50 0.45 1287.0 194.4 15.2 140.0 1 

S1 [17, 51] 45.0 30.2 0.20 75.00 0.45 1347.5 200.0 15.2 140.0 1 

M15-N-C4-1&2 [4, 54] 33.6 26.1 0.20 47.60 0.40 1392.5 200.0 15.2 140.0 1 

N-15-5 [18, 54] 35.0 26.6 0.15 57.20 0.50 1210.0 200.0 15.2 140.0 1 

16/31-1865 [5] 21.0 20.6 0.20 50.00 0.60 1286.0 204.9 15.7 146.4 1 

16/65-1150 [5] 48.0 31.2 0.20 50.00 0.60 1218.0 204.9 15.7 146.4 1 

T12-N-S3 [4, 54] 34.0 26.2 0.20 42.46 0.40 1398.4 200.0 12.7 99.0 2 

T15-N-S3 [4, 54] 37.6 27.6 0.20 45.90 0.40 1357.4 200.0 15.2 140.0 2 

NSC-I-01 (*) 38.8 28.0 0.15 44.63 0.45 1396.6 204.8 15.2 140.0 2 

NSC-I-03 (*) 26.8 23.3 0.15 44.63 0.45 1396.6 204.8 15.2 140.0 2 

NSC-I-07 (*) 64.8 36.2 0.15 44.63 0.45 1396.6 204.8 15.2 140.0 2 

NSC-II-01 (*) 29.0 24.2 0.15 44.63 0.50 1396.6 199.9 15.2 140.0 2 

NSC-II-08 (*) 30.7 24.9 0.15 44.63 0.50 1396.6 199.9 15.2 140.0 2 

NSC-II-12 (*) 48.8 31.4 0.15 44.63 0.50 1396.6 199.9 15.2 140.0 2 

(*) experimental program performed at the University of Arkansas to validate the analytical 

method  
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(a) 

 

 
(b) 

Figure 4-10 – Transverse stress distribution: (a) Isotropic elastic analysis at station 1 (free end); 

(b) Anisotropic and isotropic analysis at fracture zone at station 200 (a distance of 199 mm of the 

free end) and at effective stress of 502.1 MPa (specimen SS160-6). 
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 Transfer length comparison from measured and numerical analysis 

Table 4-3 compares the experimental and numerical results.  The numerical results presented in 

this table are plotted in Figure 4-11.a-b.   

 

Table 4-3 – Transfer length comparison between experimental and numerical results 

Specimen 

Beam Section 

b x h x L, 

mm 

Transfer length Lt, mm  

Measured 

 

Mahmoud's 

Method  

(2nd order) 

Proposed 

Method  

(3rd order) 

SS150-4 [52] 102x127x3668 737 738 771 

13/31-1200 [5] 150x225x1200 710 729 772 

13/75-950 [5] 100x200x950 405 466 490 

BS5 [30, 53] 100x250x1900 550 557 588 

M12-N-C3-1&2 [4, 54] 112.7x200x3000 851 857 894 

N-12-5 [18, 54] 112.7x112.7x1900 617 639 652 

C350/0.50 [2, 8, 14, 15] 100x100x2000 550 626 651 

C350/0.40 [2, 8, 14, 15] 100x100x2000 550 557 497 

C400/0.50 [2, 8, 14, 15] 100x100x2000 650 657 682 

C500/0.30 [2, 8, 14, 15] 100x100x2000 400 421 394 

SS160-6 [52] 102x127x3668 762 778 808 

S1 [17, 51] 150x150x3000 1092 1047 1062 

M15-N-C4-1&2 [4, 54] 115.2x200x3000 839 870 903 

N-15-5 [18, 54] 115.2x115.2x1900 727 749 715 

16/31-1865 [5] 200x250x1865 872 848 896 

16/65-1150 [5] 200x250x1150 427 486 435 

T12-N-S3 [4, 54] 150.8x200x3000 808 806 840 

T15-N-S3 [4, 54] 160.8x200x3000 997 998 1030 

NSC-I-01 (*) 165x305x5500 709 655 686 

NSC-I-03 (*) 165x305x5500 830 867 903 

NSC-I-07 (*) 165x305x5500 565 554 581 

NSC-II-01 (*) 165x305x5500 768 834 739 

NSC-II-08 (*) 165x305x5500 816 799 834 

NSC-II-12 (*) 165x305x5500 612 584 612 

(*) experimental program performed at the University of Arkansas to validate the analytical 

method 
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These figures show scattered data around the mean values because this analysis was not refined 

as needed.  However, the figures show affirmations from other researchers in this matter [18, 

54].  For instance, the linear analysis shows that the transfer length decreases when the 

coefficient of friction and concrete cover increase.   

 
(a) Coefficient of friction against transfer length 

 

 
(b) Concrete cover against transfer length 

Figure 4-11 – Correlation of between coefficient of friction and concrete cover with transfer 

length. 
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Additionally, Lim et al. [18] affirmed that the transfer length decreases not only with increasing 

concrete strength but also with increasing concrete cover [54].  If transfer length decreases when 

the coefficient of friction increases, this coefficient can be proportional to the concrete strength.  

In other words, the coefficient of friction is high for high-strength concrete.  Therefore, the bond 

between strand and high-strength concrete is greater than that of low-strength concrete.  The 

trend lines of experimental and proposed method (3rd order) are parallel while the trend line of 

Mahmoud´s method (2nd order) presents a different slope than others.  This is a result of the 

higher order equation for modeling transfer length using the thick-walled cylinder model. 

Figure 4-12 provides a comparison of transfer length for mono strand series, which are strand 

diameters of 12.7 mm and 13 mm (Figure 4-12.a) and strand diameters of 15.2 mm and 15.7 

mm (Figure 4-12.b).  Figure 4-12.a includes six results for strand diameter 12.7 mm and four 

results from strand diameter 13 mm.  The upper and lower calculated values using the proposed 

method are 21% greater than the measured value for specimen 13/75-950 and 10% less than the 

measured value for specimen C350/0.40, respectively.  On the other hand, Figure 4-12.b shows 

the four results for 15.2 mm strand and two results for the 15.7 mm.  The upper and lower given 

values by the proposed method are 8% greater than the measured value for specimen M15-N-C4-

1&2 and 3% less than the measured values for specimen S1, respectively.  In addition, Figure 4-

13 provides a comparison of transfer length for eight specimens that contained two strands.  The 

strand diameter was either 12.7 mm or 15.2 mm.  The upper and lower values are 9% greater 

than the measured value for specimen NSC-I-03 and 4% less than the measured value for 

specimen NSC-II-01, respectively. 
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(a) Strand diameter 12.7 mm and 13 mm 

 

 

 
(b) Strand diameter 15.2 mm and 15.7 mm 

Figure 4-12 – Transfer length comparison between measured and calculated for mono strand test 

series. 
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Figure 4-13 – Transfer length comparison between measured and calculated for twin strand test 

series. 

 

The concrete strain profile along the beam can be obtained using this program, as shown in 

Figure 4-14.a, and can be compared with the experimental concrete strain measurements as 

shown in Figure 4-14.b.  The figures summarize the concrete strains for specimen NSC-II-12 

along with the measured transfer lengths and the transfer lengths calculated using the 2nd order 

and 3rd order numerical analysis.  In this analysis, the measured transfer length and the transfer 

length calculated using the 3rd order method are the same as the 95% average maximum strain 

(AMS) trend line.  In addition to this analysis, the concrete and strand stress distribution along 

the beam are plotted in Figure 4-15.  The intersection between the 95% AMS trend line and the 

linear trend line gives the transfer length for 95% AMS, which is 612 mm as shown in Figure 4-

15.a.   
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(a) 

 
(b) 

Figure 4-14 – Concrete strain distribution: (a) From the numerical analysis; (b) Comparison 

between numerical analysis and experimental measurement using DEMEC gauges (specimen 

NSC-II-12). 
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Figure 4-15.b shows three zones, and each zone presents a different type of analysis as 

following: Zone 1 requires a nonlinear analysis, and a specimen in this zone is at the fully 

cracked condition along the 180 mm.  The cracking is due the hoop stress along this length being 

greater than allowable tensile strength.  Zone 2 is known as partially cracked zone and requires 

linear and nonlinear analysis, and along this 305 mm, a specimen presents visible and 

microscopic cracks.  Zone 3 is known as the uncracked zone.  This zone only requires a linear 

analysis because the hoop stress is less than allowable tensile strength, and the transfer length is 

found within this length (475 mm).  All zones are shown in Figure 4-10.b and Figure 4-14.b.  

In summary, it is expected that the use of the 3rd order equation provides a better prediction of 

the measured transfer lengths when compared to the 2nd order equation.  The predicted values 

presented in Table 4-3 are greater than or equal to the measured values.  These results could be 

related to the drastic change from zone 1 to zone 2 as shown in Figure 4-14.b while the 2nd order 

equation did not present this issue.  The consideration of additional variables into the analysis, 

typically including drying shrinkage coefficient and bond surface stiffness, possibly contributes 

to the over-estimation of the predicted values.  Further studies are needed to investigate this 

issue. 
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(a) 

 
(b) 

Figure 4-15 – Stress distribution along the beam NSC-II-12 using the proposed method: (a) 

Strand stress and transfer length calculation; (b) Concrete stress and zones of analysis. 
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 SUMMARY AND CONCLUSIONS 

This paper develops a computer program using the thick-walled cylinder theory to model strand 

bond in pretensioned concrete beams.  An expression between post-peak and crack width 

proposed by Mahmoud in 1997 has been upgraded from a second-order to the third-order 

equation because the hoop stress is related to the post-peak stress.  Hoop stress is an important 

key in this matter and affects the crack and fracture zone because of the contact pressure between 

strand and concrete, which have been analyzed in this investigation.  A data set of 24 transfer 

lengths collected from the literature was used to validate the program.  This data set consists of 

various pretensioned concrete beams that were cast with one strand or two prestressing strands.  

The beams with one strand were cast using 12.7 mm, 13 mm, 15.2 mm, and 15.7 mm diameter 

strands while beams with two strands were cast using 12.7 mm and 15.2 mm diameter strands.  

The developed computer program can be used to improve the accuracy in predicting the transfer 

length by considering the number of cracks, concrete cover, fracture criteria, and elastic analysis.  

Based on the investigation, the following conclusions can be drawn: 

1. Using the thick-walled cylinder theory with the third-order equation (proposed in this 

investigation), the predicted transfer length for all specimens with one strand, including 

12.7 or 13 mm diameter strands, are between 90% and 121% of the measured values.  The 

predicted transfer lengths using the second-order equation ranged from 100% to 114% 

when compared to the measured values.  The predicted transfer lengths for specimens with 

one, 15.2 mm strand ranged from 97% to 108% of the measured values while the predicted 

transfer lengths due to second-order equation ranged from 96% to 114%.  The predicted 

transfer length for specimens with two strands (either 12.7 mm or 15.7 mm) ranged from 

96% and 109 % while the predicted transfer lengths using the second-order equation are in 
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the range of 92% and 109%.  The results show that the third-order equation provides a 

reasonable transfer length estimate when compared to the second-order equation for beams 

containing either one 15.2 mm strand or two strands of either diameter.   

2. Transfer length is directly related to the bond between the strand and concrete.  The strand 

bond can be modeled using the Coulomb’s friction law and depends on several variables, 

including the coefficient of friction, bond factor, strand diameter, strand surface, internal 

pressure, and concrete strength. 

3. The complexity of the proposed equations to completely and partially model the concrete 

cracking most likely results in the difference in the predicted and the measured transfer 

lengths, which varies between 94% and 121%.  This increment of 21% of transfer length 

could be associated with (1) the variation in concrete strains between zone 1 and zone 2, 

which is attributed to the post-peak and crack-width relationship, and (2) the bond surface 

stiffness, which is directly proportional to the transfer length. 

4. Concrete strength, coefficient of friction, and concrete cover influence transfer length.  The 

results shown in Tables 1 and 2 indicate that transfer length decreases when these variables 

increase. 

5. The presence of the enhanced variables, including the bond surface stiffness and bond 

factor coefficient, can provide a better prediction of transfer length.  However, additional 

research is need to calibrate these parameters with experimental data because these 

parameters are directly proportional to the transfer length of prestressing strands.  
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NOTATION 

As nominal strand area 

Ab nominal area of strand 

Ag cross section area of concrete member 

Ap total area of strand 

Ac cross sectional area of concrete 

cy clear concrete cover 

db strand diameter 

ec eccentricity of the prestress force 

E  elastic modulus of element 

Ec  elastic modulus of concrete 

Ep  elastic modulus of strand 

Epr elastic modulus of strand in the transversal direction 

fsi initial prestress in strand 

fse effective prestress in strand after losses 

f’ci  concrete’s compressive strength at release of strand 

f’c  concrete’s compressive strength 

ft   concrete’s tensile strength 

fcz concrete compressive stress due to effective prestress 

fpu ultimate tensile strength 

fpy yield strength 

fpi initial prestressing stress 

Ig moment of inertia of concrete section 
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  Poisson’s ratio of element 

p  Poisson’s ratio of strand 

c  Poisson’s ratio of concrete 

p cE E   modular ratio 

n  integer number (2 for second-order equation and 3 for third-order equation) 

λb bond factor 

λsp strand perimeter factor (1 is for solid strand and 4/3 for strand seven wire) 

uscE  factor of unit system conversion for elastic modulus 

uscT  factor of unit system conversion for tensile strength 

Lt  transfer length of prestressing steel in pretensioned concrete members 

w  unit weight of concrete 

µ coefficient of friction between prestressing steel and concrete 

σi interface pressure 

r  radial stress at concrete and strand interface 

  hoop stress 

z  longitudinal stress 

εr radial strain 

εθ hoop strain 

εz longitudinal strain 

εsh drying shrinkage coefficient 

Kf  constant factor 

kt  radial stress 
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kii constant factor (ii = 1,2,3,..,7) 

bik  bond surface stiffness 

rp nominal radius of strand 

rc,1 internal radius of concrete cylinder which equals to radius of strand after prestressing 

rc,2 external radius of concrete cylinder 

r  radius in the radial direction 

R1 inner radius 

R2 outer radius 

Rcr crack radius 

Rfr  fracture radius 

τ  bond stress 

( , , )r z  polar coordinates stresses 

( , v, )u w  polar coordinates displacements 

p

fp  increase in radius of strand due to reduction in longitudinal stress from initial prestress fsi 

to effective prestress fse 

p

i  reduction in radius of strand due to the uniform radial compression at interface σi 

c

i  increase in inner radius of the thick-walled concrete cylinder due to the interface pressure 

σi 

c

fcz  increase in inner radius of the thick-walled concrete cylinder due to the longitudinal 

compressive stress at the level of strand fcz 

c

sh  reduction in inner radius of the thick-walled concrete cylinder due to drying shrinkage εsh 

c

cr  deformation of the real crack zone 
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c

fr  deformation of the fracture zone 

fr

c

Ru  radial displacement at r = Rfr 

x  incremental of transfer zone 

bif  bond force around the strand surface 

pxif  strand stress incremental 

wcr  crack width at any point  

wa  crack width 

wo  initial crack width at the shear plane 
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APPENDIX A 

This section presents procedures to solve the thick-walled cylinder equations, and the governing 

equation of the thick-walled cylinders can be derived from Figure 4-1.b. The stresses r  and 

are only functions of r and the shear stress on the element must be zero.  By solving the radial 

force equilibrium shown in Figure 4-1.b and ignoring second-order terms, a governing equation 

is given by [42, 43]:   

0rrd

dr r

  
        (A.1) 

where r = normal stress in radial direction;  = hoop stress in the circumferential direction; r = 

radius in the radial direction. 

Stresses and displacements represented in the polar coordinates as ( , , )r z and ( , v, )u w are shown 

in Figure 4-1.b-c, respectively.  The ends of the cylinder are assumed to be open and 

unconstrained ( 0z  ).  The cylinder is in a condition of plane stress, and Hooke’s law used in 

elastic and plastic analysis offers the strains given as following: 
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r r z

r z

z z r
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      (A.2) 

where εr = radial strain; εθ = hoop strain; εz = longitudinal strain; r  = radial stress at concrete 

and strand interface;   = hoop stress; z  = longitudinal stress; and  = Poisson’s ratio. 

 

Strain-displacement compatibility equation derived from Figure 4-1.c is defined as: 
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                     r z

u u w

r r z
  

 
  
 

     (A.3) 

Using the compatibility equations and Hook’s law are sufficient to obtain a unique solution to 

any axisymmetric problem with specific boundary conditions [42, 43].  Thus, Eq. (A.1) can be 

rewritten as following: 

2

2 2

1
0

u du u

r r dr r


  


       (A.4) 

A general solution to this differential equation is given by: 

2
1

C
u C r

r
          (A.5) 
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1 2r

Cu
C

r r



  


       (A.6) 

2
1 2

Cu
C

r r
          (A.7) 

Subtracting Eq. (A.6) and Eq. (A.7),   is obtained in a function of C2 and r : 
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       (A.8) 

This equation is substituted into Eq. (A.7), and r is represented by: 

 1 221 1 1

z
r

E E
C C

r




  
  

  
     (A.9) 

where C1 and C2 are constants of integration and their values can be obtained using Eq. (A.9); 

r  = radial stress; E = elastic modulus of element;   = Poisson’s ratio; and r = radius in the 

radial direction. 

To find C1 and C2, two boundary conditions were used: (1) at the inner radius: 1r R  and

r i   ; and (2) at the outer radius: 2r R  and 0r  . 
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Subtracting Eq. (A.10) and Eq. (A.11), C2 is given below: 
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Then C1 shown below is obtained by replacing Eq. (A.12) into Eq. (A.11): 
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      (A.13) 

Replacing C1 and C2 in Eq. (A.9), Eq. (A.8), and Eq. (A.5), the radial stress (σr), hoop stress 

(σθ), and radial displacement (u) written in Eq. (A.14-16) were derived, respectively, and the 

longitudinal stress ( z ) was replaced by the concrete compressive stress due to the effective 

prestress ( czf ). 
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   (A.16) 

where R1 = inner radius; R2 = outer radius; σi : interface pressure; Ec = elastic modulus of 

concrete; c  = Poisson’s ratio of concrete; and r = radius in the radial direction. 
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APPENDIX B 

This section presents procedures to solve the uncracked equation as shown in Eq. (8) which was 

widely explained by Mahmoud [30], and an equation to solve this relationship as shown in Eq. 

(9) is explained below by the following procedures: 

 

Each of the following parameters described in Eq. (8) can be expressed in Eq. (B.1-5). 
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          (B.4) 

1

c

sh shR           (B.5) 

Substituting Eqs. (B.1-5) into Eq. (8), the interfacial pressure (σi) is shown below: 
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 : CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORKS 

 

 CONCLUSIONS 

The principal goal of this dissertation is to examine the effect of concrete compressive 

strength on transfer and development length.  The second objective of the research program is to 

develop an equation for predicting transfer and development length that includes concrete 

compressive strength.  The conclusions from the research program are listed below. 

1. The results showed that transfer lengths were larger in magnitude when the compressive 

strength at release was less than 34.5 MPa (5000 psi). However, when the compressive 

strength at release was greater than 34.5 MPa (5000 psi), there was little difference in 

transfer length.  Similar trends were apparent in the development length results.   

2. Research results also show that the ACI 318-14 and AASHTO equations overestimate 

transfer lengths in members containing concrete with high compressive strengths.  

Therefore, concrete compressive strength should be a factor in predicting transfer length.  

3. Based on the results of the study, the proposed transfer length equation and the ACI 318-

14 equation are recommended when the concrete compressive strength at release is less 

than 34.5 MPa.  Based on the UA experimental data, 40db should be used as minimum 

transfer length for members containing concrete with compressive strengths at release 

greater than 34.5 MPa but less than 55 MPa.  When the concrete compressive strength at 

release is greater than 55 MPa, transfer length can be taken as 33db.  There is little change 

in transfer length as concrete compressive strength at release increases beyond 55 MPa. 

4. The data set of measured embedment lengths collected from the literature were compared 

with values predicted by the ACI 318-14 and the University of Arkansas’s proposed 
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equation (UAPE).  The standard normal distribution generated by the UAPE linked the 

area between the data set from the experimental data with the predicted values of ACI 

318-14.  The “linked area” represents a probability of 41 percent that a development 

length falls in that region.  The lower intersection point, which is 111db, between the 

normal distribution of the data set and the predicted values of the UAPE, is the proposed 

minimum value for development length.  

5. Using the thick-walled cylinder theory with the third-order equation (proposed in this 

investigation), the predicted transfer length for all specimens with one strand, including 

12.7 or 13 mm diameter strands, are between 90% and 121% of the measured values.  

The predicted transfer lengths using the second-order equation ranged from 100% to 

114% when compared to the measured values.  The predicted transfer lengths for 

specimens with one, 15.2 mm strand ranged from 97% to 108% of the measured values 

while the predicted transfer lengths due to second-order equation ranged from 96% to 

114%.  The predicted transfer length for specimens with two strands (either 12.7 mm or 

15.7 mm) ranged from 96% and 109 % while the predicted transfer lengths using the 

second-order equation are in the range of 92% and 109%.  The results show that the 

third-order equation provides a reasonable transfer length estimate when compared to the 

second-order equation for beams containing either one 15.2 mm strand or two strands of 

either diameter.   

6. Strand bond can be modeled using the Coulomb’s friction law and depends on several 

variables, including the coefficient of friction, bond factor, strand diameter, strand 

surface, internal pressure, and concrete strength. 
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7. The presence of the enhanced variables, including the bond surface stiffness and bond 

factor coefficient, can provide a better prediction of transfer length.  However, additional 

research is need to calibrate these parameters with experimental data. 

8. Much of the published literature is based on the finite element analysis of either 2-D or 3-

D.  That research analyzed the bond between the strand and concrete as a perfect bond 

which is not true because of cracks around the strand. These cracks affect the bond, and 

the perfect bond assumption between the strand and concrete cannot be used.  The 

program developed in this investigation with a crack criteria to address this matter 

provides comparable results to the experimental results. 

 

 CONTRIBUTION TO THE BODY OF KNOWLEDGE 

Several investigations have investigated the transfer and development lengths of 

prestressed concrete beams since the 1950s.  However, the uniqueness of this research program 

lies in the types and strengths of concrete that were examined.  Thus, the following contributions 

are pointed out: 

1. A new equation for transfer length prediction was derived as shown below from the 

power regression analysis.  This proposed equation depends on the variables such as: the 

initial prestress, the concrete strength at release, and the nominal strand diameter.   
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2. A new equation for development length prediction was developed which is a sum of the 

transfer length and the flexural bond length as shown below. 
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3. Based on the UA experimental data, 40db should be used as minimum transfer length for 

members containing compressive strengths at release greater than 34.5 MPa and less than 

55 MPa.  Transfer length can be predicted as 33db when the compressive strength at 

release is greater than 55 MPa.  Moreover, based on the wide data analysis of data from 

the literature, the development length between 111db and 143db represents the 41% of the 

probability of the superimposed analysis of the normal distribution, and a minimum 

development length is proposed to be as 111db. 

4. A new method using the thick-walled cylinder theory has been proposed to model the 

bond between prestressing strand and concrete surface and estimate the transfer length.  

A bond surface stiffness (kbi) and a bond factor (λb) coefficients were introduced.  

Although the proposed equation is complex due to concrete cracking around the strand 

surface, the transfer length estimation is reasonable for beams containing one strand or 

two strands. 

 

4

3
bi b b ik d  

 
  

 
 

 



www.manaraa.com

136 

 

 FUTURE WORKS 

Further numerical investigation is necessary to determine how cracks affect the bond 

between strand and concrete.  Bond modeling between concrete and strand surface can be further 

improved so that a general equation which considers all of the parameters discussed in this 

investigation.    Another area of future work is further examination of the variable bond factor 

which was introduced in the numerical analysis.  The bond factor depends on the concrete 

strength, the coefficient of friction, the concrete cover, the number of cracks, and other variables 

like twisting angle of helical wire respect to the center wire. 
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APPENDIX A: PROGRAM 1 

A.1 Code 

C     CALCULATING NUMBER OF PARAMETERS 

C     BRITTEN BY: ALBERTO RAMIREZ 

C     UNIVERSITY OF ARKANSAS 

C     AUGUST 13, 2014 

C     MODIFIED ON FEBRUARY 20, 2015 

C     RATIO = Le/Ld 

C 

C     ================================================================== 

      PARAMETER (NND = 10000) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XD(NND) !,YD(NND) 

      CHARACTER *80, FINP,FOUT 

C     ================================================================== 

C 

C 

      PRINT*, 'READ THE NAME OF THE INPUT FILE' 

      READ(*,100) FINP 

  100 FORMAT(A) 

      PRINT*, 'READ THE NAME OF THE OUTPUT FILE' 

      READ(*,100) FOUT 

C      DATA INP/5/, OUT/4/ 

C 

      OPEN (5, FILE = FINP) 

      OPEN (2, FILE = FOUT, STATUS = 'NEW') 

C 

C     ================================================================== 

C 

C 

      READ(5,*)ND,AVG,STD    ! TOTAL NUMBER OF DATA, AVERAGE, STDV 

 

C 

      AVG_UP = AVG+STD         ! AVG + STD    = UPPER 

      AVG_DOWN = AVG-STD       ! AVG - STD    = LOWER 

C 

      WRITE(2,110) ND,AVG,STD,AVG_UP,AVG_DOWN 

  110 FORMAT(//,4X,'TOTAL NUMBER OF DATA ANALYZED =',I6,/, 

     &4X,'AVERAGE =',F10.2,/,4X,'STANDARD DEVIATION =',F10.2,/, 

     &4X,'UPPER VALUE =',F10.2,/,4X,'LOWER VALUE =',F10.2) 

 

      WRITE(2,115) 

  115 FORMAT(//,7X,'NUM.',8X,'RATIO') 

      DO I = 1,ND 

      READ(5,*)XD(I) 

      WRITE(2,120)I,XD(I) 

      END DO 

  120 FORMAT(4X,I6,4X,F10.2) 

C 

      ICOUNT1 = 0; ICOUNT2 = 0; ICOUNT3 = 0 

      ICOUNT4 = 0; ICOUNT5 = 0; ICOUNT6 = 0; ICOUNT7 = 0 

      DO I = 1,ND 
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      IF(XD(I).GE.AVG_DOWN.AND.XD(I).LE.AVG_UP) ICOUNT1 = ICOUNT1 + 1 

      IF(XD(I).LT.1.0) ICOUNT2 = ICOUNT2 + 1 

      IF(XD(I).GT.AVG) ICOUNT3 = ICOUNT3 + 1 

      IF(XD(I).LT.AVG_DOWN) ICOUNT4 = ICOUNT4 + 1 

      IF(XD(I).GT.AVG_UP) ICOUNT5 = ICOUNT5 + 1 

      END DO 

C 

      NA1 = ICOUNT1    ! VALUE BETWEEN OUTLINERS 

      NB1 = ICOUNT2    ! VALUE LESS THAN 1 

      NC1 = ICOUNT3    ! VALUE GREATER THAN AVG. 

      ND1 = ICOUNT4    ! LESS THAN LOWER OUTLINE 

      NE1 = ICOUNT5    ! GREATER THAN UPPER OUTLINE 

      NF1 = ND-NB1     ! VALUES GREATER THAN 1 

C 

      NA2 = ABS(NC1-NF1)     ! BETWEEN AVEG AND 1 

      NA3 = ABS(ND-ND1-NF1)  ! BETWEEN LOWER AND 1 

      NA4 = ABS(NA3-NA1)     ! BETWEEN UPPER AND 1 

      NA5 = ABS(ND-NC1)      ! LESS THAN AVG. 

      NA6 = ABS(NA2-NA4)     ! BETWEEN AVG AND UPPER 

      NA7 = ABS(NA1-NA6)     ! BETWEEN AVG AND LOWER 

C     PORCENTAGES 

      PNA1 = 100.D0*NA1/ND; PNB1 = 100.D0*NB1/ND; PNC1 = 100.D0*NC1/ND; 

      PND1 = 100.D0*ND1/ND; PNE1 = 100.D0*NE1/ND; PNF1 = 100.D0*NF1/ND; 

      PNA2 = 100.D0*NA2/ND; PNA3 = 100.D0*NA3/ND; PNA4 = 100.D0*NA4/ND; 

      PNA5 = 100.D0*NA5/ND; PNA6 = 100.D0*NA6/ND; PNA7 = 100.D0*NA7/ND; 

 

      WRITE(2,130)NA1,PNA1,NB1,PNB1,NF1,PNF1,NC1,PNC1,NA5,PNA5,ND1,PND1, 

     &NE1,PNE1,NA2,PNA2,NA3,PNA3,NA4,PNA4,NA6,PNA6,NA7,PNA7 

  130 FORMAT(//,4X,'TOTAL NUMBERS CALCULATED FOR EACH CASE',//, 

     &4X,'=======================================================',/, 

     &9X,'CASE OF ANALYSIS',6X,'No POINTS',4X,'PERCENTAGE (%)',/, 

     &4X,'=======================================================',/, 

     &4X,'BETWEEN THE OUTLINERS ... =',I6,6X,F10.2,/, 

     &4X,'LESS THAN 1.0 ........... =',I6,6X,F10.2,/, 

     &4X,'GREATER THAN 1.0 ........ =',I6,6X,F10.2,/, 

     &4X,'GREATER THAN AVG. ....... =',I6,6X,F10.2,/, 

     &4X,'LESS THAN AVG. .......... =',I6,6X,F10.2,/, 

     &4X,'LESS THAN: LOWER ........ =',I6,6X,F10.2,/, 

     &4X,'GREATER THAN: UPPER ..... =',I6,6X,F10.2,/, 

     &4X,'BETWEEN AVG. AND 1.0 .... =',I6,6X,F10.2,/, 

     &4X,'BETWEEN LOWER AND 1.0 ... =',I6,6X,F10.2,/, 

     &4X,'BETWEEN UPPER AND 1.0 ... =',I6,6X,F10.2,/, 

     &4X,'BETWEEN AVG. AND UPPER .. =',I6,6X,F10.2,/, 

     &4X,'BETWEEN AVG. AND LOWER .. =',I6,6X,F10.2,/, 

     &4X,'=======================================================') 

C 

C 

      STOP 

      END 
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A.2 Input Data File 

Name of the input file: ACI-M152.txt 

The first row to be read by the program is: the total data to be analyzed (188), the average of data 

(0.72), and the standard deviation (0.27). 

After the second row the program reads the total data to be analyzed. 

188, 0.72, 0.27          

0.47 

0.61 

0.50 

0.57 

0.45 

0.48 

0.46 

0.51 

0.46 

. 

. 

. 

1.47 

1.22 

0.97 

 

 

A.3 Output Data File 

 

    TOTAL NUMBER OF DATA ANALYZED =   188 

    AVERAGE =      0.72 

    STANDARD DEVIATION =      0.27 

    UPPER VALUE =      0.99 

    LOWER VALUE =      0.45 

 

 

       NUM.    RATIO 

         1          0.47 

         2          0.61 

         3          0.50 

         4          0.57 

         5          0.45 

         6          0.48 
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         7          0.46 

         8          0.51 

         9          0.46 

        10          0.46 

        11          0.54 

        12          0.43 

        13          0.61 

          .              . 

          .              . 

          .              .         

       180          0.87 

       181          0.69 

       182          1.05 

       183          1.08 

       184          0.90 

       185          0.71 

       186          1.47 

       187          1.22 

       188          0.97 

 

 

    TOTAL NUMBERS CALCULATED FOR EACH CASE 

 

    ======================================================= 

         CASE OF ANALYSIS      No POINTS    PERCENTAGE (%) 

    ======================================================= 

    BETWEEN THE OUTLINERS …. =   123           65.43 

    LESS THAN 1.0 ............................ =   152           80.85 

    GREATER THAN 1.0 ................... =    36            19.15 

    GREATER THAN AVG............... =     84            44.68 

    LESS THAN AVG........................ =   104            55.32 

    LESS THAN: LOWER ……......... =     29           15.43 

    GREATER THAN: UPPER …....... =    48           25.53 

    BETWEEN LOWER AND 1.0....... =   123          65.43 

    BETWEEN UPPER AND 1.0 ……. =     0             0.00 

    BETWEEN AVG. AND UPPER … =    48           25.53 

    BETWEEN AVG. AND LOWER... =    75           39.89 

    ======================================================= 
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APPENDIX B : PROGRAM 2 

B.1 Code 

C     SUBPROGRAM TWC_LTDXv1 

C     BY INCREMENTING DX THE LT IS CALCULATED 

C     WRITTEN BY ALBERTO RAMIREZ 

C     UNIVERSITY OF ARKANSAS 

C     DECEMBER 02, 2013 

C     MODIFIED: MARCH 12, 2014 

C     MODIFIED: JUNE 21, 2014 

C     MODIFIED: MARCH 9, 2015 

C 

C 

C     ================================================================== 

      PARAMETER (NNS=10000) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XC(NNS),DL(NNS),ZA(NNS),BOND(NNS),FSE1(NNS),P1(NNS), 

     &FCZ1(NNS),XL(NNS),DATAR(NNS,NNS),FSEL(NNS,3),DINTP(2,2), 

     &PLINE(NNS,4) 

      CHARACTER *80, FINP,TINP,FOUT,PLLT,ROUT,SOUT,FINP1  !FOUT 

      CHARACTER *80, PLBOND,PLSTRD,PLCONC,DREAD 

      CHARACTER *5, TEXT,RTXT,PLT1,RTX1,RSTS,LTPL,BNPL,STRN,CONC,REA1 

C 

C     ================================================================== 

C 

      WRITE(*,120) 

 120  FORMAT(/,17X,'UNIVERSITY OF ARKANSAS',/, 

     &13X,'DEPARTMENT OF CIVIL ENGINEERING',//, 

     &1X,'PROGRAM: TWC_LT (NUMERICAL ANALYSIS OF TRANSFER LENGTHS)',/, 

     &1X,'WRITTEN BY: ALBERTO T. RAMIREZ',/, 

     &1X,'=========================================================',/) 

C 

C     ================================================================== 

      PRINT*,' ' 

      PRINT*, 'READ THE NAME OF THE INPUT FILE (WITHOUT .TXT)' 

      READ(*,100) FINP 

 100  FORMAT(A) 

C      PRINT*, 'READ THE NAME OF THE OUTPUT FILE' 

C      READ(*,100) FOUT 

C      DATA INP/5/,OUT/6/ 

C 

      TEXT = '.TXT' 

      PLT1 = '.PLT' 

      RTXT = '_OUT' 

      RTX1 = '_RSL' 

      RSTS = '_STRS' 

      LTPL = '_LT' 

      BNPL = '_BS' 

      STRN = '_STRD' 

      CONC = '_CONC' 

      REA1 = '_READ' 

C     MAKE FILES 

      TINP = TRIM(FINP)     ! 
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      FINP1 = FINP          ! 

      FINP = TRIM(FINP)//TEXT          ! INPUT FILE 

      FOUT = TRIM(FINP1)//RTXT//TEXT   ! OUTPUT FILE 

      ROUT = TRIM(FINP1)//RTX1//TEXT   ! RESULTS 

      SOUT = TRIM(FINP1)//RSTS//TEXT   ! STRESSES 

      PLLT = TRIM(FINP1)//LTPL//PLT1   ! PLOT LT 

      PLBOND = TRIM(FINP1)//BNPL//PLT1   ! PLOT BOND STIFFNESS 

      PLSTRD = TRIM(FINP1)//STRN//PLT1  ! PLOT STRAND FORCES & LT 

      PLCONC = TRIM(FINP1)//CONC//PLT1  ! PLOT CONCRETE STRESS & FORCES 

      DREAD = TRIM(FINP1)//REA1//TEXT   ! READ THE INFORMATION 

 

      OPEN (10, FILE = FINP) 

      OPEN (7, FILE = FOUT) 

      OPEN (2, FILE = ROUT) 

      OPEN (3, FILE = SOUT) 

      OPEN (1, FILE = PLLT) 

      OPEN (4, FILE = PLBOND) 

      OPEN (9, FILE = PLSTRD) 

      OPEN (11, FILE = PLCONC) 

      OPEN (12, FILE = DREAD) 

C      OPEN (7,FILE='RES.TXT') 

C 

C     ================================================================== 

C 

      PI = 4.D0*ATAN(1.D0) 

C 

      WRITE(7,200) 

 200  FORMAT(//,'ANALYSIS OF TRANSFER LENGTH IN PRESTRESSED CONCRETE',/, 

     &11X,'DEPARTMENT OF CIVIL ENGINEERING',/, 

     &15X,'UNIVERSITY OF ARKANSAS',//, 

     &'Written by: Alberto Ramirez',/, 

     &'Email: axr031@uark.edu',/, 

     &'Professor: Dr. Micah Hale',/, 

     &'Email: micah@uark.edu',//) 

C 

C     ############### READ STEEL PROPERTIES ############################ 

C 

C     DB: DIAMETER OF STRAND 

C     FSI: INITIAL JACKING STRESS 

C     EP: ELASTIC MODULUS OF STRAND 

C     PR_P: POISSON'S RATIO OF STRAND 

C 

C     #################### READ CONCRETE PROPERTIES #################### 

C 

C     CY: CLEVER COVER 

C     FCI: COMPRESSIVE STRENGT AT RELEASE 

C     EC: ELASTIC MODULUS OF CONCRETE 

C     PR_C: POISSON'S RATIO OF CONCRETE  (0.15 - 0.20) 

C 

C     ================== READ INPUT FILES ============================== 

C 

      READ(10,*) NDB,DB,FSI,EP,PR_P,UNIT  ! STRAND PROPERTIES 

      READ(10,*) FCI,PR_C             ! CONCRETE PROPERTIES 

      READ(10,*) CX1,CY1,S1               !cx(mm),cy(mm),S(mm)  C-COVER 

      READ(10,*) B,H,BLNG                 ! CROSS SECTION OF THE BEAM 

      READ(10,*) FRICT,WO,NI              ! FACTORS OF FRACTURE 

      READ(10,*) HR,TM                    ! FACTORS FOR SHRINKAGE 
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C      READ(10,*) IV1,IV2,IV3,IV4,IV5,IV6,IV7,IV8,IV9,IV10,IV11,IV12, 

C     &IV13,IV14,IV15,IV16,IV17,IV18,IV19,IV20,IV21 

C 

      ! FACTOR FOR DATA PRINTING 

      IV1 = 1; IV2 = 5; IV3 = 10; IV4 = 15; IV5= 20; IV6 = 25; IV7 = 30 

      IV8 = 35; IV9 = 40; IV10 = 45; IV11 = 50; IV12 = 55; IV13 = 60 

      IV14 = 65; IV15 = 70; IV16 = 75; IV17 = 80; IV18 = 85; IV19 = 90 

      IV20 = 95; IV21 = 100 

       

C 

      IF(NI.GE.100) NIF = NI/100 

      IV2 = NIF*IV2; IV3 = NIF*IV3; IV4 = NIF*IV4; IV5 = NIF*IV5 

      IV6 = NIF*IV6; IV7 = NIF*IV7; IV8 = NIF*IV8; IV9 = NIF*IV9 

      IV10 = NIF*IV10; IV11 = NIF*IV11; IV12 = NIF*IV12; IV13 = NIF*IV13 

      IV14 = NIF*IV14; IV15 = NIF*IV15; IV16 = NIF*IV16; IV17 = NIF*IV17 

      IV18 = NIF*IV18; IV19 = NIF*IV19; IV20 = NIF*IV20; IV21 = NIF*IV21 

C 

C     ================= TYPE OF ANALYSIS AND No CRACKS ================= 

      WRITE(*,205) 

 205  FORMAT(/,4X,'TYPE OF ANALYSIS UPON THE ZONES',/, 

     &4X,'===============================',//, 

     &4X,'UNCRACKED ZONE: ELASTIC ANALYSIS             (0)',/, 

     &4X,'CRACK AND FRACTURE ZONE: NONLINEAR ANALYSIS  (1)') 

      READ(*,*)TA 

      IF(TA.EQ.0) GO TO 211 

C 

      WRITE(*,210) 

 210  FORMAT(/,4X,'METHOD OF ANALYSIS',/, 

     &4X,'===================',//, 

     &4X,'MAHMOUDïS METHOD: SECOND ORDER     (0)',/, 

     &4X,'PROPOSED METHOD: THIRD ORDER       (1)') 

      READ(*,*)ATP 

C 

 211  CONTINUE 

      IF(TA.EQ.0) THEN 

      NRC = 0 

      WRITE(*,212) 

 212  FORMAT(/,4X,'TYPE OF CONTACT PRESSURE:',/, 

     &4X,'=============================',//, 

     &4X,'PRESSURE 1 : SIG(i) ........ WRITE (0)',/, 

     &4X,'PRESSURE 2 : SIG(i) = ft ... WRITE (1)') 

      READ(*,*) NTP 

      ELSE 

C 190  CONTINUE 

      WRITE(*,215) 

 215  FORMAT(/,4X,'NUMBER OF RADIAL CRACKS TO BE CONSIDERED IN:',/, 

     &4X,'=============================================',//, 

     &4X,'CRACK ANALYSIS:       1-6 (RECOMENDED 3-4)') 

      READ(*,*)NRC 

      NTP = 1 

      END IF 

 

C     ================= PREVIOUS CALCULATION =========================== 

C 

C     US UNITS LOW RELAXATION STRAND 

      IF(DB.EQ.0.50D0) AP = 0.153D0 

      IF(DB.EQ.0.60D0) AP = 0.217D0 
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      IF(DB.EQ.0.70D0) AP = 0.294D0  ! IN.^2 

C     SI UNITS LOW RELAXATION STRAND 

      IF(DB.EQ.12.7D0) AP = 99.0D0    ! MM^2 

      IF(DB.EQ.13.0D0) AP = 99.69D0 

      IF(DB.EQ.15.2D0) AP = 140.D0 

      IF(DB.EQ.15.7D0) AP = 146.4D0 

      IF(DB.EQ.17.8D0) AP = 190.D0 

C 

C     ##################### DEFINE TYPE OF UNIT  ####################### 

C 

      IF(UNIT.EQ.0) THEN 

      WRITE(7,*) 'CUSTOMARY U.S. UNITS' 

      FVS = 1.D0 

      FFCI = 1.D0 

      ELSE 

      WRITE(7,*) 'CUSTOMARY S.I. UNITS' 

      FVS = 25.4D0    ! 1in. = 25.4mm 

      FFCI = 0.145D0  !1MPa = 0.145 ksi, 25.4D0*25.4D0/(9.81D0*0.4536D0) 

      END IF 

C 

C     ========================== PRINT STRAND PROPERTIES =============== 

C     FOR SEVEN WIRE STRAND 

C 

      PSTD = 4.D0*PI*DB/3.D0      ! STRAND PERIMETER OR 2*PI*R1 = PI*DB 

C 

      WRITE(7,300)NDB,DB,AP,FSI,EP,PR_P 

 300  FORMAT(//,4X,'STRAND PROPERTIES',/,'=========================',//, 

     &'STRAND NUMBER(S) ........... =',I4,/, 

     &'DIAMETER ................... =',F10.2,/, 

     &'AREA ....................... =',F10.3,/, 

     &'INTIAL JACKING STRESS ...... =',F10.2,/, 

     &'ELASTIC MODULUS ............ =',F10.2,/, 

     &'POISSONS RATIO ............. =',F10.2) 

C 

C     ================= CONCRETE PROPERTIES CALCULATION ================ 

C 

C      READ(10,*) CY,FCI,PR_C,TA 

C 

      FCI_R = FCI 

      IF(UNIT.EQ.0) THEN 

C      EC = 33000.D0*UWC**(1.5)*SQRT(FCI)   ! KSI 

      EC = 57.D0*SQRT(FCI*1000.D0)      ! KSI 

      FT = 7.5D0*SQRT(FCI*1000.D0)/1000.D0     ! KSI, LIMIT IN TENSION 

      FT_L = 0.6D0*FCI        ! LINEAR LIMIT IN COMPRESSION 

      ELSE 

      EC = 4500*SQRT(FCI)     ! MPa 

      FT = 0.62D0*SQRT(FCI)   ! LIMIT IN TENSION 

      FT_L = 0.6D0*FCI        ! LIMIT IN COMPRESSION 

      END IF 

C     EFECTIVE CONCRETE COVER 

      SFACT = 1.5D0     ! ASSUMED BY UIJL 

      CCS = MIN(CX1,CY1) 

      CEFF =(2.D0*CCS+(NDB-1)*SFACT*S1)/(2.D0*NDB) 

      CCV = CEFF 

C 

      WRITE(7,400)FCI,EC,PR_C,CCV,FT,FT_L 

 400  FORMAT(//,3X,'CONCRETE PROPERTIES',/, 
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     &'=========================',//, 

     &'COMPRESSIVE STRENGTH AT RELEASE..... =',F10.2,/, 

     &'ELASTIC MODULUS..................... =',F10.2,/, 

     &'POISSONS RATIO ..................... =',F10.2,/, 

     &'CONCRETE COVER ..................... =',F10.2,/, 

     &'LIMIT TENSILE STRENGTH ............. =',F10.2,/, 

     &'LIMIT COMPRESSION STRENGTH ......... =',F10.2) 

C 

C     =================== THICK WALLED ASSUMPTIONS ===================== 

C 

C     THICK-WALLED CYLINDER ASSUMPTION 

C 

      R1 = DB/2        ! INNER RADIUS OF THICK-WALLED 

      CY = CCV-R1      ! THICK WALL OR CLEVER COVER 

      R2 = R1+CY       ! OUTER RADIUS OF THICK-WALLED 

      NR = 1000        ! NUMBER OF RADIAL PARTS 

      DR = (R2-R1)/NR  ! INCREMENT OF RADIUS 

C 

      WRITE(7,500)R1,R2,NR,DR 

 500  FORMAT(//,3X,'THICK-WALLED CYLINDER',/, 

     &'==============================',//, 

     &'INNER RADIUS .......... =',F6.2,/, 

     &'OUTER RADIUS .......... =',F6.2,/, 

     &'NUMBER OF RADIAL PARTS  =',I5,/, 

     &'INCREMENT OF RADIUS ... =',F6.5) 

C 

C     ================================================================== 

C              CROSS-SECTION OF A PRESTRESSED CONCRETE BEAM 

C     ================================================================== 

C 

C     B: WIDTH OF THE BEAM 

C     H: HIGHT OF THE BEAM 

C 

C      READ(10,*) B,H 

C 

      BI = B*H**3/12.D0    ! INERTIA 

      BA = B*H             ! AREA OF THE CROSS-SECTION OF THE BEAM 

      ECC = H/2.D0-CY1      ! ECCENTRICITY FROM NA TO THE STRAND 

      VS = BA/(2.D0*(B+H))   ! V/S : VOLUME SURFACE 

C      PRINT*,VS,HR 

C 

      WRITE(7,600)B,H,BA,BI,ECC 

 600  FORMAT(//,3X,'PRESTRESSED CONCRETE BEAM',/, 

     &'=================================',//, 

     &'WIDTH OF THE BEAM .......... =',F10.2,/, 

     &'HIGHT OF THE BEAM .......... =',F10.2,/, 

     &'AREA ....................... =',F10.2,/, 

     &'INERTIA .................... =',E12.3,/, 

     &'ECCENTRICITY ............... =',F10.2) 

C 

C     ================================================================== 

C        NUMBER OF RADIAL CRACKS & FRICTION COEFFICIENT ON THE BOND 

C     ================================================================== 

C 

C     NRC: NUMBER OF RADIAL CRACKS 

C     FRICT: FRICTION ASSUMED 

C 
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C      READ(10,*) NRC,FRICT,WO,NI,ATP 

C 

      WRITE(7,700)NRC,FRICT,WO,NI 

 700  FORMAT(//,3X,'VALUES ASSUMED',/, 

     &'=================================',//, 

     &'NUMBER OF RADIAL CRACK .......... =',I5,/, 

     &'COEFFICIENT OF FRICTION ......... =',F6.2,/, 

     &'WIDTH OF THE CRACK .............. =',F6.4,/, 

     &'NUMBER OF ITERATIONS ............ =',I5,//) 

C 

C      READ(INP,*) ATP      ! ANALYSIS TYPE: QUADRATIC (0) & CUBIC (1) 

C 

      IF(TA.EQ.0) THEN 

      WRITE(7,*) 'UNCRACKED ZONE: ELASTIC ANALAYSIS' 

      ELSE 

      WRITE(7,*) 'COMPLETE CRACK AND FRACTURE ZONE ANALYSIS' 

      IF(ATP.EQ.0) THEN 

      WRITE(7,*) 'ANALYSIS TYPE: SECOND ORDER' 

      ELSE 

      WRITE(7,*) 'ANALYSIS TYPE: THIRD ORDER' 

      END IF 

      END IF 

C     ================================================================== 

C 

C      READ(10,*)HR,TM 

C 

C      READ(10,*)IV1,IV2,IV3,IV4,IV5,IV6 

C 

C     SET UP XL(I) TO ZERO 

      DO I = 1,NNS 

      XL(I) = 0.D0 

      P1(I) = 0.D0 

      FCZ1(I) = 0.D0 

      FSE1(I) = 0.D0 

      BOND(I) = 0.D0 

      END DO          ! POSITION 

C     LENGTH OF EACH ELEMENT 

      DX =  1.D0 !     0.001D0   !1.D0/N   ! LENGTH OF EACH ELEMENT 

C     ================================================================== 

C 

      FSE95 = 0.95D0*FSI  ! 95% AMS 

C      PRINT*,FSE95 

C 

C     ================================================================== 

C 

C     COEFFICIENT OF SHRINKAGE 

C 

      CALL SHRINKAGE(FVS,FFCI,VS,FCI,HR,TM,EPS_SH) 

C      EPS_SH = 0.D0    ! -KS*KH*(T/(T+35))*0.51*10**(-3) 

      WRITE(7,*) 'STRAIN DUE TO SHRINKAGE:',EPS_SH 

C 

C     ================================================================== 

C 

      EPR = EP      ! ELASTIC MODULUS IN THE TRANSVERSAL DIRECTION 

C 

      WRITE(1,750) 

      WRITE(2,800) 
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 750  FORMAT(6X,'Lt(i)',6X,'Fse',6X,'FSE95',4X,'SIG(i)',3X,'SFr',5X, 

     *'Fcz',5X,'Rfr',5X,'Rcr',6X,'Wa',5X,'WO',5X,'STAGE') 

 800  FORMAT(2X,'INC.#',5X,'Lt(i)',6X,'Fse',6X,'FSE95',4X,'SIG(i)',3X, 

     *'SFr',5X,'Fcz',5X,'Rfr',5X,'Rcr',6X,'Wa',5X,'WO',5X,'STAGE') 

C 

C     ================================================================== 

C     ======================= MAIN PROGRAM STARTS FROM HERE ============ 

C     ================================================================== 

C 

      FSE1(1) = 0.0 

C 

      INJJ = 0 

 850  INJJ = INJJ+1 

      I = INJJ 

C      PRINT*,I 

C      DO 50 I = 1,NI+1 

      FSE = FSE1(I)     ! INCREMENT OF EFFECTIVE STRESS 

C      FSE = DFSE*(I-1) 

C 

C      IF(FSE.GT.FSI) FSE = FSI 

      FCZ = -NDB*FSE*AP*(1.D0/BA + ECC**2/BI) 

C 

C     ====================== ELASTIC ANALYSIS ========================== 

C 

      DPFP = (FSI-FSE)*PR_P/EP    ! INCREASE IN RADIUS OF STRAND 

      FFCZ = -PR_C*FCZ/EC         ! FACTOR OF COMPRESSIVE STRESS 

C 

      IF(DPFP.LT.0.D0) DPFP = 0.D0 

C 

      CALL ELSTRESS(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,SIG_I) 

C 

C      PRINT*,SIG_I 

      IF(SIG_I.LT.0.D0) GO TO 50 

C 

C      WRITE(7,*)'SIG_E =',SIG_I                !%%%%%%%%%%% 

C 

      SIGR = (-1.D0)*FT*(R2**2-R1**2)/(R2**2+R1**2) 

      RCR = R1      ! CRACKED RADIUS EQUAL TO INNER RADIUS 

      RFR = R1      ! FRACTURE RADIUS EQUAL TO INNER RADIUS 

      XC(I) = 3     ! UNCRACKED CASE  ===== CONDITION ====== 

C 

      IF(SIG_I.LT.ABS(SIGR).OR.TA.EQ.0) GO TO 40 

C 

C     ================================================================== 

C     =============== BOTH COMPLETE CRACK & FRACTURE ZONE ============== 

C 

      RCR = R1 

      LC = 0 

  30  LC = LC+1 

      RFR = R1+(0.0001D0*LC)*(R2-R1)   ! RADIUS AT FRACTURE ZONE 

C      IF(RFR.GT.1.001D0*R2) GO TO 20 

      IF(RFR.GT.R2) GO TO 40     !**** FROM 20 TO 40 

C      IF(RCR.LT.R1) RCR = R1     ! MAYBE IT IS NOT NECESARY... CHECK IT! 

C 

      IF(ATP.EQ.0) THEN 

      CALL CRSTRESS(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,SIG_IR,DPFP_R,SKT) 
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C 

      ELSE 

      CALL CRSTRESS3(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,SIG_IR,DPFP_R,SKT) 

C 

      END IF 

C 

C      IF(SIG_IR.GT.FT_L) SIG_IR = 0.4D0*FT_L        ! $$$$$$ 

C 

C      WRITE(7,*)'SIG_CR =',SIG_IR,'  RFR =',RFR           !%%%%%%%%%%% 

C 

C     ================================================================== 

C 

      RCR_I = RCR 

C     CRACK WIDTH 

      WA = (2.D0*PI/NRC)*(DPFP_R-SIG_IR*(1.D0-PR_P)*R1/EPR) 

      IF(WA.LT.WO) WA = WO        !******************** ADDED*********** 

      RCR = RFR-(WO/WA)*(RFR-R1)    ! RADIUS AT CRACKED ZONE 

C 

      SFR1 = -SIG_IR*R1/RFR 

C 

      IF(ATP.EQ.0) THEN 

      SIG_FR = SFR1+SKT*(RFR**2/3.D0-RCR*RFR+RCR**2-RCR**3/(3.D0*RFR)) 

C 

      ELSE 

      SIG_FR = SFR1+SKT*(RFR**3/4.D0-RCR*RFR**2+1.5D0*RCR**2*RFR- 

     &         RCR**3+RCR**4/(4.D0*RFR)) 

      END IF 

C 

      SIG_RFR = FT*(RFR**2-R2**2)/(R2**2+RFR**2)  ! RUPTURE STRENGTH C 

      SIG_I = SIG_IR 

      XC(I) = 1     ! CRACKED ZONE 

C 

      IF(WA.LT.WO) RCR = R1 

      IF(ABS(SIG_RFR/SIG_FR).LT.0.98) GO TO 30   ! LESS THAN 97% MSA 

C 

C  20  IF(WA.GT.WO) GO TO 40    !*****???????????????? 

      IF(WA.LT.WO) GO TO 40      !FROM GT TO LT 

C 

C     ====================== ONLY FRACTURE ZONE ======================== 

C 

      INC = 0 

      LC = 0 

  10  LC = LC+1 

      RFR = R1+(0.0001D0*LC)*(R2-R1)   ! RADIUS AT FRACTURE ZONE 

      INC = INC+1 

C 

      IF(RFR.GE.R2) RFR=R2 

      IF(INC.GT.5000) GO TO 40 

C 

      IF(ATP.EQ.0) THEN 

      CALL FRSTRESS(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,WA,WO,SIG_IR,DPFP_R,SK2,SK3,SK4) 

C 

      ELSE 

      CALL FRSTRESS3(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,WA,WO,SIG_IR,DPFP_R,SK2,SK3,SK23,SK4) 
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C 

      END IF 

C 

C      IF(SIG_IR.GT.FT_L) SIG_IR = 0.4D0*FT_L        ! $$$$$$ 

C 

C      WRITE(7,*)'SIG_FR =',SIG_IR,'  RFR =',RFR         !%%%%%%%%%%%                

!%%%%%%%%%%% 

C     ================================================================== 

      R = RFR 

      CK1 = -(R1*SIG_IR+SK4)/R 

C 

      IF(ATP.EQ.0) THEN 

      SIG_FR = CK1+(FT+SK2*(RFR-0.5D0*R)+SK3*(RFR**2-RFR*R+R**2/3.D0)) 

      ELSE 

      SIG_FR = CK1+(FT+SK2*(RFR-0.5D0*R)+SK3*(RFR**2-RFR*R+R**2/3.D0)+ 

     &         SK23*(RFR**3-1.5D0*RFR**2*R+RFR*R**2-R**3/4.D0)) 

      END IF 

C 

      SIG_RFR = FT*(RFR**2-R2**2)/(RFR**2+R2**2) 

C     CRACK WIDTH 

      WA = (2.D0*PI/NRC)*(DPFP_R-SIG_IR*(1.D0-PR_P)*R1/EPR) 

C 

      IF(WA.LT.WO) RCR = R1     !; WA = WO 

      SIG_I = SIG_IR 

C 

      XC(I) = 2     ! FRACTURE ZONE 

C 

      IF(ABS(SIG_RFR/SIG_FR).LT.0.98) GO TO 10   ! LESS THAN 97% MSA 

C 

C     ================================================================== 

C 

C     ================================================================== 

  40  CONTINUE 

C 

C      IF(RFR.GE.R2) WRITE(*,900)RFR,XC(I) 

      IF(RFR.GE.R2) RFR = R2 

C 900  FORMAT(2X,F10.4,5X,'INSUFICIENT COVER STAGE',3X,F8.2,//, 

C     &4X,'PROBABLY THE NUMBER OF CRACKS NEEDS TO BE INCREASED',//) 

C      IF(RFR.GE.R2) STOP 

C      IF(RFR.GE.R2) GO TO 190 

C 

C     ============== BOND BETWEEN CONCRETE AND STRAND ================== 

C 

 

      IF(DB.LT.15.OR.DB.LT.0.6D0) THEN 

         IF(NRC.EQ.0) FBND1 = 1.00D0 

         IF(NRC.EQ.1) FBND1 = 1.10D0   ! OK 

         IF(NRC.EQ.2) FBND1 = 0.90D0   ! OK 

         IF(NRC.EQ.3) FBND1 = 0.75D0   ! OK 

         IF(NRC.EQ.4) FBND1 = 0.60D0   ! OK 

         IF(NRC.EQ.5) FBND1 = 0.55D0   ! OK 

         IF(NRC.EQ.6) FBND1 = 0.50D0 !1.25/NRC ! DUE TO SOME FACT.. 

         INCR = 1 

      ELSE 

C      IF(DB.GT.15.OR.DB.GT.0.6D0) FBND = 0.90D0*NRC 

         IF(NRC.EQ.0) FBND1 = 1.00D0 

         IF(NRC.EQ.1) FBND1 = 1.45D0  ! OK 
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         IF(NRC.EQ.2) FBND1 = 1.15D0 

         IF(NRC.EQ.3) FBND1 = 0.95D0  ! OK 

         IF(NRC.EQ.4) FBND1 = 0.85D0  ! OK 

         IF(NRC.EQ.5) FBND1 = 0.65D0  ! OK 

         IF(NRC.EQ.6) FBND1 = 0.55D0  ! OK 

         INCR = 2 

      END IF 

C      PRINT*,FBND1,INCR 

C 

C     STRESSES AND FORCES AT ONE THICK WALLED CYLINDER 

C 

C      BOND(I) = FBND*2.D0*PI*R1*FRICT*SIG_I 

      BOND(I+1) = FBND1*PSTD*FRICT*SIG_I           ! PSTD > 2.D0*PI*R1 

      BONDT = NDB*BOND(I+1) 

C 

      DFSE = BONDT*DX/AP       ! AP = AREA OF ONE STRAND 

C 

      FSE1(I+1) = FSE1(I)+DFSE 

C 

      IF(FSE1(I+1).GT.FSI) FSE1(I+1) = FSI 

      P1(I+1) = NDB*FSE1(I+1)*AP 

      FCZ1(I+1) = -P1(I+1)*(1.D0/BA + ECC**2/BI) 

C      FCZ = -FSE*AP*(1.D0/BA + ECC**2/BI) 

C      END IF 

C      IF(DL(I).LT.0.D0) GO TO 50 

C 

C      XL = XL+DL(I)    ! POSITION 

      XL(I+1) = XL(I)+DX    ! POSITION 

C 

C     ================================================================== 

C     ================== WRITE TRANSFER LENGTH ========================= 

C     ================================================================== 

C 

C 

      NJD = I 

      DATAR(I,1) = I; DATAR(I,2) = XL(I); DATAR(I,3) = FSE 

      DATAR(I,4) = FSE95; DATAR(I,5) = SIG_I; DATAR(I,6) = SIG_IR 

      DATAR(I,7) = FCZ; DATAR(I,8) = RFR; DATAR(I,9) = RCR_I 

      DATAR(I,10) = WA; DATAR(I,11) = WO; DATAR(I,12) = XC(I) 

C 

C      WRITE(1,1000)XL(I),FSE,FSE95,SIG_I,SIG_IR,FCZ,RFR,RCR_I,WA,WO, 

C     &XC(I) 

C      WRITE(2,1050)I,XL(I),FSE,FSE95,SIG_I,SIG_IR,FCZ,RFR,RCR_I,WA,WO, 

C     &XC(I) 

C1000  FORMAT(3F11.3,11F8.3) 

C1050  FORMAT(I5,3F11.3,11F8.3) 

C 

C      IF(FSE95.LT.FSE1(I)) WRITE(7,1100)I,XL(I),FSE1(I),SIG_I 

C1100  FORMAT(/,'95% of Fsi',/,I5,7F10.3) 

C 

C     ================================================================== 

C 

      DO J = 1,NI 

      ZA(J) = 0 

      END DO 

C 

      ZA(IV1) = 1; ZA(IV2) = 1; ZA(IV3) = 1; ZA(IV4) = 1; ZA(IV5) = 1 
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      ZA(IV6) = 1; ZA(IV7) = 1; ZA(IV8) = 1; ZA(IV9) = 1; ZA(IV10) = 1 

      ZA(IV11) = 1; ZA(IV12) = 1; ZA(IV13) = 1; ZA(IV14) = 1 

      ZA(IV15) = 1; ZA(IV16) = 1; ZA(IV17) = 1; ZA(IV18) = 1 

      ZA(IV19) = 1; ZA(IV20) = 1; ZA(IV21) = 1 

C 

      IF(ZA(I).NE.1) GO TO 50 

      WRITE(3,*) 'RESULTS' 

C      WRITE(4,*) 'RESULTS' 

C 

      IF(XC(I).EQ.3) GO TO 3 

      IF(XC(I).EQ.2) GO TO 2 

C 

      IF(ATP.EQ.0) THEN 

      CALL RCRSTRESS(R1,R2,DR,NR,SIG_I,RCR_I,RFR,FT,I,XL,XC,FINP1) 

C 

      ELSE 

      CALL RCRSTRESS3(R1,R2,DR,NR,SIG_I,RCR_I,RFR,FT,I,XL,XC, 

     &FINP1) 

C 

      END IF 

C 

C 200  FORMAT(I5,5F12.4) 

C     ================================================================== 

      GO TO 50 

C 

   2  CONTINUE 

C 

      IF(ATP.EQ.0) THEN 

      CALL RFRSTRESS(R1,R2,DR,NR,SIG_IR,RFR,FT,SK2,SK3,SK4, 

     &I,XL,XC,FINP1) 

C 

      ELSE 

      CALL RFRSTRESS3(R1,R2,DR,NR,SIG_IR,RFR,FT,SK2,SK3,SK23,SK4, 

     &I,XL,XC,FINP1) 

C 

      END IF 

C 

      GO TO 50 

C 

   3  CONTINUE 

C 

      CALL RELSTRESS(R1,R2,DR,NR,SIG_I,I,XL,XC,FT,FT_L,FINP1,NTP) 

C 

  50  CONTINUE 

      DLT = FSE1(I+1)-FSE1(I) 

      IF(DLT.GT.0.010) GO TO 850 

C 

      PRINT*,FBND1,INCR               ! TO SEE WHERE IT OCCURS 

C      PRINT*,NJD 

C      DO I = 1,NJD 

C      NJ = DATAR(I,1) 

C      WRITE(7,1150)NJ,(DATAR(I,J),J=2,12) 

C1150  FORMAT(I5,3F11.3,11F8.3) 

C      END DO 

C 

      FSE95_1 = DATAR(NJD,3) 

      IF(FSE95_1.LT.FSE95) THEN 
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         FSE95 = 0.999D0*FSE95_1 

         DO I = 1,NJD 

         DATAR(I,4) = FSE95 

         END DO 

      ELSE 

         FSE95 = FSE95 

      END IF 

C      PRINT*,FSE95 

C 

      DO I = 1,NJD 

      NCOL = DATAR(I,1) 

      WRITE(1,1000) (DATAR(I,J),J = 2,12) 

      WRITE(2,1050) NCOL,(DATAR(I,J),J = 2,12) 

C      WRITE(1,1000)XL(I),FSE,FSE95,SIG_I,SIG_IR,FCZ,RFR,RCR_I,WA,WO, 

C     &XC(I) 

C      WRITE(2,1050)I,XL(I),FSE,FSE95,SIG_I,SIG_IR,FCZ,RFR,RCR_I,WA,WO, 

C     &XC(I) 

      END DO 

1000  FORMAT(3F11.3,11F8.3) 

1050  FORMAT(I5,3F11.3,11F8.3) 

C 

C 

      CALL PINFL(NNS,FSEL,NJD,DATAR,FSE95,DINTP) 

C      PRINT*,FSEL(1,1),FSEL(1,2),FSEL(1,3) 

C      PRINT*,DINTP(1,1),DINTP(1,2),DINTP(2,1),DINTP(2,2) 

C 

      X1 =DINTP(1,1); X2 = DINTP(1,2); Y1 = DINTP(2,1); Y2 = DINTP(2,2) 

C 

      Y = FSE95 

      CALL INTERP(X1,X,X2,Y1,Y,Y2) 

      WRITE(*,1125)FSI,FSE95,FCI_R,X,NRC 

      WRITE(7,1125)FSI,FSE95,FCI_R,X,NRC 

1125  FORMAT(//,4X,'RESULTS FROM THE ANALYSIS',/, 

     &4X,'=========================',/, 

     &4X,'INITIAL PRESSTRESS ............. =',F8.1,/ 

     &4X,'PRESTRESS AT 95% AMS METHOD .... =',F8.1,/, 

     &4X,'CONCRETE STRENGHT AT RELEASE ... =',F8.1,/, 

     &4X,'CALCULATED TRANSFER LENGTH ..... =',F8.1,/, 

     &4X,'NUMBER OF RADIAL CRACKS ........ =',I5,/) 

C 

      CALL PSLOP(NNS,NJD,DATAR,PLINE,X,Y) 

 

C 

C     ===================== DATA PLOT FOR TECPLOT ====================== 

C     BOND 

      DO I = 1,NJD 

      STIFB = BOND(2)-BOND(I) 

      IF(I.EQ.1) STIFB = BOND(I) 

      BSTRAIN = STIFB/EP 

      WRITE(4,1150)XL(I),BOND(I),STIFB,BSTRAIN 

      END DO 

1150  FORMAT(5F11.3) 

C 

C     CONCRETE 

      DO I = 1,NJD 

      CSTR = FCZ1(I)/EC*10**6     ! CONCRETE STRAIN BY 10^-6 

      WRITE(11,1150)XL(I),-FCZ1(I),X,-CSTR,XC(I) 
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      END DO 

C 

C     STRAND 

      DO I = 1,NJD 

      SSTR = FSE1(I)/EP 

      WRITE(9,1200)XL(I),FSE1(I),P1(I),FSE95,FSI,X,PLINE(I,2),SSTR,XC(I) 

      END DO 

1200  FORMAT(10F11.3) 

C 

      WRITE(12,1250) 

1250  FORMAT(/, 

     &1X,'READ THIS DATA INFORMATION FOR EACH FILE BEFORE PLOTTING',/, 

     &1X,'========================================================',//, 

     &1X,'(1): FILENAME_LT.PLT',//, 

     &1X,'Lt(i);',2X,'Fse;',2X,'FSE95;',2X,'SIG(i);',2X,'SFr;',2X, 

     *'Fcz;',2X,'Rfr;',2X,'Rcr;',2X,'Wa;',2X,'WO;',2X,'STAGE',///, 

     &1X,'(2): FILENAME_BS.PLT',//, 

     &1X,'DIST. FROM FREE END;',2X,'BOND;',2X,'BOND FROM ZERO',2X, 

     &'BOND STRAIN',///, 

     &1X,'(3): FILENAME_CONC.PLT',//, 

     &1X,'DIST. FROM FREE END;',2X,'STRESS;',2X,'Lt;',2X, 

     &'STRAIN by 10^-6;',2X,'FRACT. ZONES',///, 

     &1X,'(4): FILENAME_STRD.PLT',//, 

     &1X,'DIST. FROM FREE END;',2X,'STRESS;',2X,'FORCE;',2X,'95% AMS;', 

     &2X,'Fsi;',2X,'Lt;',2X,'EQ. LINE Lt;',2X,'STRAIN;',2X, 

     &'FRACT. ZONES',///, 

     &1X,'(5): FILENAME_RFRXXXX.PLT  OR  FILENAME_RCRXXXX.PLT',//, 

     &1X,'RADIAL INCR.;',2X,'RADIAL STRESSES;',2X,'HOOP STRESSES;',2X, 

     &'Lti;',2X,'FRACT. ZONES',///, 

     &1X,'(6): FILENAME_RELXXXX.PLT',//, 

     &1X,'RADIAL INCR.;',2X,'RADIAL STRESSES;',2X,'HOOP STRESSES;',2X, 

     &'TENSILE LIMIT Ft;',2X,'COMPRESS. LIMIT Ft_L;',2X,'Lti;',2X, 

     &'FRACT. ZONES',///) 

C 

      STOP 

      END 

C 

C     ================================================================== 

C                            SUBROUTINES 

C     ================================================================== 

C 

C     =================== SUBROUTINE ELSTRESS ========================== 

C     ELASTIC CONTACT PRESSURE INTERFACE 

C 

      SUBROUTINE ELSTRESS(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,SIG_I) 

      IMPLICIT REAL*8 (A-H,O-Z) 

C 

      SKC = ((1.D0-PR_C)*R1**2+(1.D0+PR_C)*R2**2)/(R2**2-R1**2) 

      SIG_I = (DPFP-FFCZ-EPS_SH)/((1-PR_P)/EPR+(SKC/EC)) 

      RETURN 

      END 

C 

C     =================== SUBROUTINE CRSTRESS ========================== 

C     CRACKED CONTACT PRESSURE INTERFACE 

C 

      SUBROUTINE CRSTRESS(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,SIG_IR,DPFP_R,SKT) 
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      IMPLICIT REAL*8 (A-H,O-Z) 

C 

      DPFP_R = DPFP*R1 

      DCFCZ = FFCZ*RFR    !RFR      !R1  (FCZ*(PR_C/EC)*RFR) 

      DCSH = EPS_SH*R1 

C 

      SKT = FT/(RFR-RCR)**2 

C     CONSTANT K1 

      SK11 = (RFR**3-RCR**3)*(1.D0-3.D0*PR_C)/9.D0 

      SK12 = RCR*(RFR**2-RCR**2)*(1.D0-2.D0*PR_C)/2.D0 

      SK13 = (RCR**2)*(RFR-RCR)*(1.D0-PR_C) 

      SK14 = (RCR**3)*(LOG(RFR/RCR))/3.D0 

C 

      SK1 = (SKT/EC)*(SK11-SK12+SK13-SK14) 

C     RADIAL DISPLACEMENT FRACTURE : RDCFR 

      SIG_FR = (-1.D0)*FT*(R2**2-RFR**2)/(R2**2+RFR**2) 

      RDCFR = RFR*(FT-PR_C*SIG_FR)/EC 

C 

      SK6 = R1*((1.D0-PR_P)/EPR+LOG(RFR/R1)/EC) 

C 

      SIG_IR = (DPFP_R+SK1-RDCFR-DCFCZ-DCSH)/SK6      ! SIG_I = SIG_IR 

C 

      IF(SIG_IR.GT.FT_L) SIG_IR = FT_L 

C 

      RETURN 

      END 

C 

C     =================== SUBROUTINE FRSTRESS ========================== 

C     FRACTURE CONTACT PRESSURE INTERFACE 

C 

      SUBROUTINE FRSTRESS(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,WA,WO,SIG_IR,DPFP_R,SK2,SK3,SK4) 

      IMPLICIT REAL*8 (A-H,O-Z) 

C 

      DPFP_R = DPFP*R1 

      DCFCZ = FFCZ*RFR   !RFR     ! R1   (FFCZ*(PR_C/EC)*RFR) 

      DCSH = EPS_SH*R1 

C     CONSTANTS K2, K3, & K4 

      SK2 = -(2.D0*WA/WO)*FT/(RFR-R1) 

      SK3 = (WA/WO)**2*(FT/(RFR-R1)**2) 

C 

      SK41 = SK3*R1*(RFR**2-RFR*R1+R1**2/3.D0) 

      SK4 = FT*R1+SK2*R1*(RFR-0.50D0*R1)+SK41 

C     CONSTANT K5 

      SK51 = (FT/EC)*(RFR-R1)*(1.D0-PR_C) 

      SK52 = RFR*(RFR-R1)*(1.D0-PR_C) 

      SK53 = 0.25D0*(RFR**2-R1**2)*(1.D0-2.D0*PR_C) 

      SK54 = (RFR**2)*(RFR-R1)*(1.D0-PR_C) 

      SK55 = 0.50D0*RFR*(RFR**2-R1**2)*(1.D0-2.D0*PR_C) 

      SK56 = (RFR**3-R1**3)*(1.D0-3.D0*PR_C)/9.D0 

      SK57 = (SK4/EC)*LOG(RFR/R1) 

C 

      SK5 = SK51+(SK2/EC)*(SK52-SK53)+(SK3/EC)*(SK54-SK55+SK56)-SK57 

C      SK5 = SK57-SK51-(SK2/EC)*(SK52-SK53)-(SK3/EC)*(SK54-SK55+SK56) 

C     RADIAL DISPLACEMENT RDCFR 

      SIG_FR = (-1.D0)*FT*(R2**2-RFR**2)/(R2**2+RFR**2) 

      RDCFR = RFR*(FT-PR_C*SIG_FR)/EC 
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C     CONSTANT K7 

C      SK7 = R1*((1.D0-PR_P)/EPR+LOG(RFR/R1)/EC) 

      FRL = RCR*RFR/(R1**2) 

      SK7 = R1*((1.D0-PR_P)/EPR+LOG(FRL)/EC) 

C 

      SIG_IR = (DPFP_R+SK5-RDCFR-DCFCZ-DCSH)/SK7 

C 

      IF(SIG_IR.GT.FT_L) SIG_IR = FT_L 

C 

      RETURN 

      END 

C 

C     =================== SUBROUTINE RCRSTRESS ========================== 

C     RADIAL CRACKED STRESS 

C 

      SUBROUTINE RCRSTRESS(R1,R2,DR,NR,SIG_I,RCR_I,RFR,FT,I,XL,XC,FINP1) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XC(1),XL(1) 

      CHARACTER *80,FILENAME,FINP1 

C 

      ID = I 

      WRITE(FILENAME,'("_RCR",I4.4,".PLT")')ID 

      FILENAME = TRIM(FINP1)//TRIM(FILENAME) 

      OPEN(8,FILE = FILENAME) 

C 

      N = NR+1 

      DO 35 J = 1,N   !N 

      R = R1+DR*(J-1)              ! DR = 0.01D0*(R2-R1) 

      IF(R.GE.RCR_I) GO TO 10 

      SIG_R = -SIG_I*R1/R 

      SIG_T = 0.D0 

      GO TO 30 

  10  IF(R.GE.RFR) GO TO 20 

      SKT = FT/((RFR-RCR_I)**2) 

      SRI = -SIG_I*R1/R 

      SIG_R = SRI+SKT*(R**2/3.D0-RCR_I*R+RCR_I**2-RCR_I**3/(3.D0*R)) 

      SIG_T = SKT*(R-RCR_I)**2     !  SKT*(R**2-2*R*RCR_I+RCR_I**2) 

      GO TO 30 

  20  IF(RFR.GE.R2) RFR = 0.9995*R2 

      SIG_FR = FT*(R2**2-RFR**2)/(RFR**2+R2**2)     ! SHOULD BE + 

C 

      SIG_R = -SIG_FR*((R2/R)**2-1.D0)/((R2/RFR)**2-1.D0) 

      SIG_T = SIG_FR*((R2/R)**2+1.D0)/((R2/RFR)**2-1.D0) 

C      DIS_U = C1*RR/EC*((1.D0-PR_C)+(1.D0+PR_C)*(R2/RR)**2)-C4 

C 

C  30  WRITE(4,100)R,SIG_R,SIG_T,XL(I),XC(I) 

  30  WRITE(8,100)R,SIG_R,SIG_T,XL(I),XC(I) 

      WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

  35  CONTINUE 

C  30  WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

 100  FORMAT(5F12.4) 

 200  FORMAT(I5,5F12.4) 

C 

      RETURN 

      END 

C 

C 
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C     =================== SUBROUTINE RFRSTRESS ========================== 

C     RADIAL FRACTURE STRESS 

C 

      SUBROUTINE RFRSTRESS(R1,R2,DR,NR,SIG_IR,RFR,FT,SK2,SK3,SK4, 

     &I,XL,XC,FINP1) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XC(1),XL(1) 

      CHARACTER *80,FILENAME,FINP1 

C 

      ID = I 

      WRITE(FILENAME,'("_RFR",I4.4,".PLT")')ID 

      FILENAME = TRIM(FINP1)//TRIM(FILENAME) 

      OPEN(8,FILE = FILENAME) 

C 

      N = NR+1 

      DO 35 J = 1,N   ! N = 101 

      R = R1+DR*(J-1)      ! DR = (0.01D0*(R2-R1)) 

      IF(R.GE.RFR) GO TO 10   !!! 

C 

      CK1 = -(R1*SIG_IR+SK4)/R 

      SIG_R = CK1+(FT+SK2*(RFR-0.5D0*R)+SK3*(RFR**2-RFR*R+R**2/3.D0)) 

      SIG_T = FT+SK2*(RFR-R)+SK3*(RFR-R)**2  !(RFR**2-2.D0*RFR*R+R**2) 

      GO TO 30 

  10  SIG_FR = FT*(R2**2-RFR**2)/(RFR**2+R2**2)     ! SHOULD BE + 

      IF(RFR.GE.R2) GO TO 30 

C 

      SIG_R = -SIG_FR*((R2/R)**2-1.D0)/((R2/RFR)**2-1.D0) 

      SIG_T = SIG_FR*((R2/R)**2+1.D0)/((R2/RFR)**2-1.D0) 

C      DIS_U = C1*RR/EC*((1.D0-PR_C)+(1.D0+PR_C)*(R2/RR)**2)-C4 

C  30  WRITE(4,100)R,SIG_R,SIG_T,XL(I),XC(I) 

  30  WRITE(8,100)R,SIG_R,SIG_T,XL(I),XC(I) 

      WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

  35  CONTINUE 

C  30  WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

 100  FORMAT(5F12.4) 

 200  FORMAT(I5,5F12.4) 

C 

      RETURN 

      END 

C 

C 

C     =================== SUBROUTINE RELSTRESS ========================== 

C     RADIAL ELASTIC STRESS 

C 

      SUBROUTINE RELSTRESS(R1,R2,DR,NR,SIG_I,I,XL,XC,FT,FT_L,FINP1,NTP) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XC(1),XL(1) 

      CHARACTER *80,FILENAME,FINP1 

C 

      ID = I 

      WRITE(FILENAME,'("_REL",I4.4,".PLT")')ID 

      FILENAME = TRIM(FINP1)//TRIM(FILENAME) 

      OPEN(8,FILE = FILENAME) 

C 

      FT_L = -FT_L 

      N = NR+1 

C 
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C     WHEN THE SIG_I IS EQUAL TO FT 

      IF(SIG_I.GT.FT.AND.NTP.EQ.1) THEN 

      SIG_I = FT 

      WRITE(3,*)'WHEN THE SIG_I IS EQUAL TO FT' 

C 

      DO 30 J = 1,N   !N 

      R = R1+DR*(J-1)   !  DR = (0.01D0*(R2-R1)) 

C 

      SIG_R = -SIG_I*((R2/R)**2-1.D0)/((R2/R1)**2-1.D0) 

      SIG_T = SIG_I*((R2/R)**2+1.D0)/((R2/R1)**2-1.D0) 

C      DIS_U = C1*RR/EC*((1.D0-PR_C)+(1.D0+PR_C)*(R2/RR)**2)-C4 

C 

C      WRITE(4,100)R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

      WRITE(8,100)R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

      WRITE(3,200)I,R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

C  30  WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

  30  CONTINUE 

      ELSE 

      DO 20 J = 1,N   !N 

      R = R1+DR*(J-1)   !  DR = (0.01D0*(R2-R1)) 

C 

      SIG_R = -SIG_I*((R2/R)**2-1.D0)/((R2/R1)**2-1.D0) 

      SIG_T = SIG_I*((R2/R)**2+1.D0)/((R2/R1)**2-1.D0) 

C      DIS_U = C1*RR/EC*((1.D0-PR_C)+(1.D0+PR_C)*(R2/RR)**2)-C4 

C 

C      WRITE(4,100)R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

      WRITE(8,100)R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

      WRITE(3,200)I,R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

C  20  WRITE(3,200)I,R,SIG_R,SIG_T,FT,FT_L,XL(I),XC(I) 

  20  CONTINUE 

      END IF 

C 

 100  FORMAT(7F12.4) 

 200  FORMAT(I5,7F12.4) 

C 

      RETURN 

      END 

C 

C 

C     CUBIC ASSUMPTION 

C     =================== SUBROUTINE CRSTRESS3 ========================= 

C     CRACKED CONTACT PRESSURE INTERFACE 

C 

      SUBROUTINE CRSTRESS3(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,SIG_IR,DPFP_R,SKT) 

      IMPLICIT REAL*8 (A-H,O-Z) 

C 

      DPFP_R = DPFP*R1 

      DCFCZ = FFCZ*RFR    !RFR      !R1  (FCZ*(PR_C/EC)*RFR) 

      DCSH = EPS_SH*R1 

C 

      SKT = FT/(RFR-RCR)**3 

C     CONSTANT K1 

      SK11 = (RFR**4-RCR**4)*(1.D0-4.D0*PR_C)/16.D0 

      SK12 = RCR*(RFR**3-RCR**3)*(1.D0-3.D0*PR_C)/3.D0 

      SK13 = 3.D0*RCR**2*(RFR**2-RCR**2)*(1.D0-2.D0*PR_C)/4.D0 

      SK14 = (RCR**3)*(RFR-RCR)*(1.D0-PR_C) 
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      SK15 = (RCR**4)*(LOG(RFR/RCR))/4.D0 

C 

      SK1 = (SKT/EC)*(SK11-SK12+SK13-SK14+SK15) 

C     RADIAL DISPLACEMENT FRACTURE : RDCFR 

      SIG_FR = FT*(RFR**2-R2**2)/(RFR**2+R2**2) 

      RDCFR = RFR*(FT-PR_C*SIG_FR)/EC 

C 

      SK6 = R1*((1.D0-PR_P)/EPR+LOG(RFR/R1)/EC) 

C 

      SIG_IR = (DPFP_R+SK1-RDCFR-DCFCZ-DCSH)/SK6      ! SIG_I = SIG_IR 

C 

      IF(SIG_IR.GT.FT_L) SIG_IR = FT_L 

C 

      RETURN 

      END 

C 

C     =================== SUBROUTINE FRSTRESS3 ========================= 

C     FRACTURE CONTACT PRESSURE INTERFACE 

C 

      SUBROUTINE FRSTRESS3(R1,R2,PR_C,DPFP,FFCZ,EC,EPS_SH,PR_P,EPR,FT, 

     &FT_L,RFR,RCR,WA,WO,SIG_IR,DPFP_R,SK2,SK3,SK23,SK4) 

      IMPLICIT REAL*8 (A-H,O-Z) 

C 

      DPFP_R = DPFP*R1 

      DCFCZ = FFCZ*RFR   !RFR     ! R1   (FFCZ*(PR_C/EC)*RFR) 

      DCSH = EPS_SH*R1 

C     CONSTANTS K2, K3, & K4 

      SK2 = -(3.D0*WA/WO)*FT/(RFR-R1) 

      SK3 = 3.D0*(WA/WO)**2*(FT/(RFR-R1)**2) 

      SK23 = -(WA/WO)**3*(FT/(RFR-R1)**3) 

C 

      SK41 = SK3*R1*(RFR**2-RFR*R1+R1**2/3.D0) 

      SK42 = SK23*R1*(RFR**3-1.5D0*RFR**2*R1+RFR*R1**2-0.25D0*R1**3) 

      SK4 = FT*R1+SK2*R1*(RFR-0.50D0*R1)+SK41+SK42 

C     CONSTANT K5 

      SK51 = (FT/EC)*(RFR-R1)*(1.D0-PR_C) 

      SK52 = RFR*(RFR-R1)*(1.D0-PR_C) 

      SK53 = 0.25D0*(RFR**2-R1**2)*(1.D0-2.D0*PR_C) 

      SK54 = (RFR**2)*(RFR-R1)*(1.D0-PR_C) 

      SK55 = 0.50D0*RFR*(RFR**2-R1**2)*(1.D0-2.D0*PR_C) 

      SK56 = (RFR**3-R1**3)*(1.D0-3.D0*PR_C)/9.D0 

      SK57 = RFR**3*(RFR-R1)*(1.D0-PR_C) 

      SK58 = 0.75D0*(RFR**2)*(RFR**2-R1**2)*(1.D0-2.D0*PR_C) 

      SK59 = RFR*(RFR**3-R1**3)*(1.D0-3.D0*PR_C)/3.D0 

      SK510 = (RFR**4-R1**4)*(1.D0-4.D0*PR_C)/16.D0 

      SK511 = (SK4/EC)*LOG(RFR/R1) 

C 

      SK5 = SK51+(SK2/EC)*(SK52-SK53)+(SK3/EC)*(SK54-SK55+SK56)+ 

     &      (SK23/EC)*(SK57-SK58+SK59-SK510)-SK511 

C      SK5 = SK57-SK51-(SK2/EC)*(SK52-SK53)-(SK3/EC)*(SK54-SK55+SK56) 

C     RADIAL DISPLACEMENT RDCFR 

      SIG_FR = FT*(RFR**2-R2**2)/(RFR**2+R2**2) 

      RDCFR = RFR*(FT-PR_C*SIG_FR)/EC 

C     CONSTANT K7 

C      SK7 = R1*((1.D0-PR_P)/EPR+LOG(RFR/R1)/EC) 

      FRL = RCR*RFR/(R1**2) 

      SK7 = R1*((1.D0-PR_P)/EPR+LOG(FRL)/EC) 
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C 

      SIG_IR = (DPFP_R+SK5-RDCFR-DCFCZ-DCSH)/SK7 

C 

      IF(SIG_IR.GT.FT_L) SIG_IR = FT_L 

C 

      RETURN 

      END 

C 

C     =================== SUBROUTINE RCRSTRESS3 ======================== 

C     RADIAL CRACKED STRESS 

C 

      SUBROUTINE RCRSTRESS3(R1,R2,DR,NR,SIG_I,RCR_I,RFR,FT,I,XL,XC, 

     &FINP1) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XC(1),XL(1) 

      CHARACTER *80,FILENAME,FINP1 

C 

      ID = I 

      WRITE(FILENAME,'("_RCR",I4.4,".PLT")')ID 

      FILENAME = TRIM(FINP1)//TRIM(FILENAME) 

      OPEN(8,FILE = FILENAME) 

C 

      N = NR+1 

      DO 35 J = 1,N   !N 

      R = R1+DR*(J-1)              ! DR = 0.01D0*(R2-R1) 

      IF(R.GE.RCR_I) GO TO 10 

      SIG_R = -SIG_I*R1/R 

      SIG_T = 0.D0 

      GO TO 30 

  10  IF(R.GE.RFR) GO TO 20 

      SKT = FT/((RFR-RCR_I)**3) 

      SRI = -SIG_I*R1/R 

      SIG1 = R**3/4.D0-RCR_I*R**2 

      SIG2 = 1.5D0*R*RCR_I**2-RCR_I**3+RCR_I**4/(4.D0*R) 

      SIG_R = SRI+SKT*(SIG1+SIG2) 

      SIG_T = SKT*(R-RCR_I)**3 

C     SIG_T = SKT*(R**3-3*R**2*RCR_I+2*R*RCR_I**2-RCR_I**3) 

      GO TO 30 

  20  IF(RFR.GE.R2) RFR = 0.9995*R2 

      SIG_FR = FT*(R2**2-RFR**2)/(RFR**2+R2**2)     ! SHOULD BE + 

C 

      SIG_R = -SIG_FR*((R2/R)**2-1.D0)/((R2/RFR)**2-1.D0) 

      SIG_T = SIG_FR*((R2/R)**2+1.D0)/((R2/RFR)**2-1.D0) 

C      DIS_U = C1*RR/EC*((1.D0-PR_C)+(1.D0+PR_C)*(R2/RR)**2)-C4 

C 

C  30  WRITE(4,100)R,SIG_R,SIG_T,XL(I),XC(I) 

  30  WRITE(8,100)R,SIG_R,SIG_T,XL(I),XC(I) 

      WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

C  30  WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

  35  CONTINUE 

 100  FORMAT(5F12.4) 

 200  FORMAT(I5,5F12.4) 

C 

      RETURN 

      END 

C 

C 
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C     =================== SUBROUTINE RFRSTRESS3 ======================== 

C     RADIAL FRACTURE STRESS 

C 

      SUBROUTINE RFRSTRESS3(R1,R2,DR,NR,SIG_IR,RFR,FT,SK2,SK3,SK23,SK4, 

     &I,XL,XC,FINP1) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION XC(1),XL(1) 

      CHARACTER *80,FILENAME,FINP1 

C 

      ID = I 

      WRITE(FILENAME,'("_RCR",I4.4,".PLT")')ID 

      FILENAME = TRIM(FINP1)//TRIM(FILENAME) 

      OPEN(8,FILE = FILENAME) 

C 

      N = NR+1 

      DO 35 J = 1,N   ! N = 101 

      R = R1+DR*(J-1)      ! DR = (0.01D0*(R2-R1)) 

      IF(R.GE.RFR) GO TO 10   !!! 

C 

      CK1 = -(R1*SIG_IR+SK4)/R 

      SIG_R = CK1+(FT+SK2*(RFR-0.5D0*R)+SK3*(RFR**2-RFR*R+R**2/3.D0)+ 

     &        SK23*(RFR**3-1.5D0*RFR**2*R+RFR*R**2-R**3/4.D0)) 

      SIG_T = FT+SK2*(RFR-R)+SK3*(RFR-R)**2+SK23*(RFR-R)**3 

      GO TO 30 

  10  SIG_FR = FT*(R2**2-RFR**2)/(RFR**2+R2**2)     ! SHOULD BE + 

      IF(RFR.GE.R2) GO TO 30 

C 

      SIG_R = -SIG_FR*((R2/R)**2-1.D0)/((R2/RFR)**2-1.D0) 

      SIG_T = SIG_FR*((R2/R)**2+1.D0)/((R2/RFR)**2-1.D0) 

C      DIS_U = C1*RR/EC*((1.D0-PR_C)+(1.D0+PR_C)*(R2/RR)**2)-C4 

C  30  WRITE(4,100)R,SIG_R,SIG_T,XL(I),XC(I) 

  30  WRITE(8,100)R,SIG_R,SIG_T,XL(I),XC(I) 

      WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

C  30  WRITE(3,200)I,R,SIG_R,SIG_T,XL(I),XC(I) 

  35  CONTINUE 

 100  FORMAT(5F12.4) 

 200  FORMAT(I5,5F12.4) 

C 

      RETURN 

      END 

C 

C 

C     =================== SUBROUTINE SHRINKAGE ========================= 

C 

      SUBROUTINE SHRINKAGE(FVS,FFCI,VS,FCI,HR,TM,EPS_SH) 

      IMPLICIT REAL*8 (A-H,O-Z) 

C 

C     STRAIN  DUE TO SHRINKAGE, ESH, AT TIME T (AASHTO LRFD 5.4.2.3.3-1) 

C 

C      EPS_SH = 0.D0           ! FOR TIME TM = 0.D0 

      VS = VS/FVS 

      FCI = FCI*FFCI   ! FROM PSI TO KSI 

      HR = HR/100.D0 

C      PRINT*,HR 

C     FACTORS 

      FKHS = 2.D0-0.014D0*HR   ! HR: RELATIVE HUMINITY IN PERCENT 

      FKS = 1.45D0-0.13D0*VS   ! >= 1    ! VS = VOL/SUP 
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      IF(FKS.LT.1.D0) FKS = 1.D0 

      FKF = 5.D0/(1.D0+FCI) 

      FKTD = TM/(61.D0-4.D0*FCI+TM) 

C 

      SHRG = FKS*FKHS*FKF*FKTD 

C      PRINT*,'VS,FKHS,FKS,FKF,FKTD' 

C      PRINT*,VS,FKHS,FKS,FKF,FKTD 

C      WRITE(6,*)FKS,FKHS,FKF,FKTD 

      EPS_SH = -FKS*FKHS*FKF*FKTD*(0.00048D0) 

      FSTR_SH = -FKS*FKHS*FKF*FKTD*(0.00048D0) 

C      EPS_SH = -KS*KH*(T/(T+35))*0.51*10**(-3) 

C      PRINT*,FSTR_SH,EPS_SH,SHRG 

C 

      RETURN 

      END 

C 

C 

C 

C     ===============SUBROUTINE INTERPOLATION ========================== 

      SUBROUTINE INTERP(X1,X,X2,Y1,Y,Y2) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      FAC = (X2-X1)/(Y2-Y1) 

      X = X1+(Y-Y1)*FAC 

C      B = A+(C-A)*(X2-X1)/(X3-X1) 

      RETURN 

      END 

C 

C     =================== SUBROUTINE PINFLECTION ======================= 

C     GET THE FIRST MAXIMUN INFLECTION POINT 

      SUBROUTINE PINFL(NNS,FSEL,NJD,DATAR,FSE95,DINTP) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION DATAR(NNS,NNS),FSEL(NNS,3),DINTP(2,2) 

C     SET UP TO ZERO 

      DO I = 1,6 

      FSEL(I,1) = 0; FSEL(I,2) = 0.D0; FSEL(I,3) = 0.D0 

      END DO 

C 

      J = 0  ; J1 = 0 

      DO I = 1,NJD-1 

         A1 = DATAR(I,3); B1 = DATAR(I+1,3) 

         IF(B1.GT.FSE95.AND.FSE95.GT.A1) THEN 

            J = 1+J 

            FSEL(J,1) = DATAR(I+1,1); FSEL(J,2) = DATAR(I+1,2) 

            FSEL(J,3) = B1 

            X1 = DATAR(I,2); X2 = DATAR(I+1,2) 

            Y1 = A1; Y2 = B1 

         END IF 

      END DO 

C 

      DO I = 1,NJD-1 

         A1 = DATAR(I,3); B1 = DATAR(I+1,3) 

         IF(B1.GT.FSE95.AND.FSE95.GT.A1) THEN 

            DINTP(1,1) = DATAR(I,2); DINTP(1,2) = DATAR(I+1,2) 

            DINTP(2,1) = A1; DINTP(2,2) = B1 

         END IF 

      END DO 

C 
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      RETURN 

      END 

C 

C 

C     =================== SUBROUTINE PLOT LT LINE ====================== 

C 

      SUBROUTINE PSLOP(NNS,NJD,DATAR,PLINE,X,Y) 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION DATAR(NNS,NNS),PLINE(NNS,4) 

C     SET UP TO ZERO 

      DO I = 1,6 

      PLINE(I,1) = 0.D0; PLINE(I,2) = 0.D0 

      PLINE(I,3) = 0.D0; PLINE(I,4) = 0.D0 

      END DO 

C 

      DO I = 1,NJD 

         XLT = DATAR(I,2) 

         PLINE(I,1) = XLT 

         SLOP = Y/X 

         PLINE(I,2) = SLOP*XLT 

         PLINE(I,3) = X 

         PLINE(I,4) = Y 

      END DO 

C 

      RETURN 

      END 

C 
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B.2 Input Data File 

See Table 1, Chapter 04, for the input data 

Name of the input file: DNSCII12 

2, 15.2, 1396.6, 199900.0, 0.30, 1   

48.8, 0.15                          

57.0, 51.0, 51.0   

165.0, 305.0, 5500.0                

0.50, 0.05, 1000                     

70.0, 1.0  

 

B.3 Output Data File 

ANALYSIS OF TRANSFER LENGTH IN PRESTRESSED CONCRETE 

           DEPARTMENT OF CIVIL ENGINEERING 

               UNIVERSITY OF ARKANSAS 

 

Written by: Alberto Ramirez 

Email: axr031@uark.edu 

Professor: Dr. Micah Hale 

Email: micah@uark.edu 

 

 

 CUSTOMARY S.I. UNITS 

 

 

    STRAND PROPERTIES 

========================= 

 

STRAND NUMBER(S).............. =            2 

DIAMETER................................. =         15.20 

AREA........................................... =       140.00 

INTIAL JACKING STRESS........ =     1396.60 

ELASTIC MODULUS….............. = 199900.00 

POISSONS RATIO……............... =           0.30 
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   CONCRETE PROPERTIES 

========================= 

 

COMPRESSIVE STRENGTH AT RELEASE..... =      48.80 

ELASTIC MODULUS.......................................... = 31435.65 

POISSONS RATIO .............................................. =        0.15 

CONCRETE COVER ........................................... =      44.63 

LIMIT TENSILE STRENGTH............................. =        4.33 

LIMIT COMPRESSION STRENGTH................. =      29.28 

 

 

   THICK-WALLED CYLINDER 

============================== 

 

INNER RADIUS.............................. = 7.60 

OUTER RADIUS ............................ = 44.63 

NUMBER OF RADIAL PARTS …. = 1000 

INCREMENT OF RADIUS ............. = 0.03703 

 

 

   PRESTRESSED CONCRETE BEAM 

================================= 

 

WIDTH OF THE BEAM ......... =    165.00 

HIGHT OF THE BEAM .......... =    305.00 

AREA........................................ = 50325.00 

INERTIA................................... =   0.390E+09 

ECCENTRICITY ..................... =    101.50 

 

 

   VALUES ASSUMED 

================================= 

 

NUMBER OF RADIAL CRACK .......... =    6 

COEFFICIENT OF FRICTION ............. = 0.50 

WIDTH OF THE CRACK...................... = 0.05 

NUMBER OF ITERATIONS ................ = 1000 

 

 

 COMPLETE CRACK AND FRACTURE ZONE ANALYSIS 

 ANALYSIS TYPE: THIRD ORDER 

 STRAIN DUE TO SHRINKAGE: -2.06413039939869836E-005 

 

 

    RESULTS FROM THE ANALYSIS 
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    ========================= 

    INITIAL PRESSTRESS ............................... = 1396.6 

    PRESTRESS AT 95% AMS METHOD….... = 1326.8 

    CONCRETE STRENGHT AT RELEASE ... =    48.8 

    CALCULATED TRANSFER LENGTH....... =   612.2 

    NUMBER OF RADIAL CRACKS................ =    6 
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